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A numerical analysis of the influence of the liquid depth
on two-dimensional Faraday waves
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In this work a numerical analysis of two-dimensional Faraday waves is presented. This study is
based on direct numerical simulation of Navier–Stokes and continuity equations with appropriate
boundary conditions. Stability maps on the (F-a) plane for viscous liquid layers with equilibrium
depths between 531025 m and 1025 m are presented; comparisons are made with the linear
stability predictions obtained with Benjamin and Ursell’s model for an inviscid fluid and with
Kumar and Tuckerman’s model for a viscous fluid. Regions in which time-periodic solutions are no
longer obtained and nonlinear effects are relevant, and are also delimited and analyzed: in these
zones the disintegration of the free surface into drops may take place. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1601220#
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I. INTRODUCTION

When a container filled with a liquid is subject to a ve
tical oscillation, waves may be formed at the gas–liquid
terface. For given physicochemical properties of the liqu
the required conditions under which a wavy interface is
veloped depend on the frequency and the amplitude of
imposed vibration, the depth of the liquid layer and the g
ometry of the container.

The analysis of this system is a phenomenon clos
related to the storage and transportation of liquids when
frequency of the external vibration is low, and to the atom
zation of liquids, at large frequencies of the imposed acc
eration. The atomization of liquids is important in ma
transfer operations in which the mean size of the dr
formed should be very small. Because the mean diamete
the drops ejected from the free surface is proportional to
inverse of the excitation frequency, it is possible to produ
very small drops if the period of the imposed oscillation
small enough.

This problem was first investigated by Faraday1 who
also reported that the frequency of the surface waves, to
known as Faraday waves, is equal to one half the freque
of the external forcing. Many years later, Benjamin a
Ursell2 explained the phenomena reported by Faraday a
lyzing the linearized hydrodynamic inviscid problem. Th
derived a set of Mathieu’s equations and showed that re
nance is responsible for the wavy motion. They also c
cluded that the free surface is always unstable wheneve
ratio between any of the natural frequencies of the sys
and the external one is equal ton/2 (n51,2,3,...), even for
amplitudes of the imposed acceleration infinitesimally sm
This unrealistic result is a consequence of the ideal beha
assumed.

a!Author to whom correspondence should be addressed. Electronic
fasaita@ceride.gov.ar
3091070-6631/2003/15(10)/3099/15/$20.00
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Ockendon and Ockendon3 extended the analysis pre
sented by Benjamin and Ursell to small but finite perturb
tions and included nonlinear terms. Miles4 proposed an av-
eraged Lagrangian approach from which a weakly nonlin
model can be derived. He introduced additional linear ter
into the evolution equations to approximate the damping
fects produced by viscous dissipation at the solid bounda
and at the free surface when it is covered by a viscoela
surface film, and by capillary hysteresis associated with
presence of contact lines.5

These works were followed by others in which weak
nonlinear models were discussed. A review of these analy
was presented by Miles and Henderson6 in 1990 and by
Miles7 in 1993.

Kumar and Tuckerman8 were the first to derive and to
solve the linear stability problem for the interface of tw
viscous fluids subject to a vertical oscillation, based on
complete hydrodynamic problem; that is, Navier–Stokes a
continuity equations. They show that under the effect of v
cosity the hydrodynamic system cannot be reduced to a
of Mathieu equations with a linear damping term that is t
result of the phenomenological approach usually adopte
the literature. A few years later, Cerda and Tirapegui9 re-
stated the problem analyzed by Kumar and Tuckerman;
expression obtained for the amplitude of the free surface~an
integro-differential equation! takes into account viscous e
fects in the bulk, near the bottom wall of the container and
the free surface. In their analysis, these authors show
their equation can be reduced to a Mathieu equation fo
highly viscous fluid; however, it differs from that derived b
Benjamin and Ursell2 for the inviscid case.

Although the literature related to Faraday waves is c
siderable, there are very few studies in which the numer
solution of the complete hydrodynamic problem is cons
ered. In fact, numerical works on two-dimensional Farad
waves have been presented very recently by Wrightet al.10

and Murakami and Chikano.11
il:
9 © 2003 American Institute of Physics
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Wright et al.10 analyzed the standing periodic wav
formed at the interface of two ideal fluids. They employ
two numerical methods, the boundary integral method w
the density of one of the fluids is negligible and a vort
sheet method, otherwise. In their analysis, both fluids w
incompressible and they extended to infinity; the effect
viscosity was considered including an extra term in the Eu
equation.

Murakami and Chikano11 used the SMAC method to
solve the governing equations~Navier–Stokes and continuit
equations! with appropriate boundary conditions, once th
were transformed into a boundary-time-dependent coordi
system. The values of the parameters of the system anal
in that work were the same as those of the experiments
ported by Lioubashevskiet al.12 corresponding to a highly
viscous fluid. Murakami and Chikano discussed the veloc
fields of the two-dimensional standing waves developed n
the onset of the instability; they also investigated nume
cally their stability to two-dimensional disturbances in ord
to reproduce the localized state reported by Lioubashe
et al. However, the uniform standing-waves proved to
stable, suggesting that the localized states are a th
dimensional phenomenon.

In this work we study the evolution of a thin layer of
liquid subject to a vertical periodic acceleration of high fr
quency by numerically solving the full Navier–Stokes equ
tions. Attention is restricted to the two-dimensional stabil
problem as in the abovementioned analysis.

The numerical technique employed is based on
Galerkin/finite element method combined with a suitable
rametrization of the free surface~Kheshgi and Scriven13! that
allows, at each time step, the simultaneous solution of
complete set of governing equations~Navier–Stokes and
continuity! and boundary conditions.

The main goals of this work are:~i! to build the stability
charts for various liquid depths in order to determine
influence of this parameter on the stability of the system;~ii !
to validate our numerical predictions by comparing the
with results obtained from linear stability analysis; e.g., tho
produced by Benjamin and Ursell for an ideal fluid and
Kumar and Tuckerman for a viscous one;~iii ! to delimit the
regions in which our numerical predictions are unstable
the motion of the free surface is so intense that stand
waves are no longer present;~iv! to analyze the velocity
fields in order to relate the viscous effects associated to
friction in thin films to the minimum force required to dest
bilize the system. Point~iii ! is important because it locate
regions of the stability maps where drops may be produ
and ejected from the free surface.

II. MATHEMATICAL FORMULATION

A Newtonian and incompressible liquid of viscositym
and densityr, is lying on a horizontal solid plate. The a
above the liquid is regarded as inviscid, it exerts only norm
stresses along the gas-liquid interface and its pressure is
form everywhere. The system is isothermic and there are
surface active agents present; therefore all the physicoch
cal properties including the surface tension~s! are uniform
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and constant. The liquid layer is extended on the horizon
plane (x,z) and its equilibrium height measured along t
y-coordinate isH0 . A vertical harmonic oscillation of ampli-
tudea0 and frequencyv is imposed to the system in order t
destabilize the free surface; since the reference fra
adopted~see Fig. 1! is attached to the solid wall the extern
acceleration is added to gravity acceleration.

In this work we consider only two-dimensional~2-D!
motions of the liquid, then its height can be expressed
dimensionless form ash(t,x).

Initially, a 2-D sinusoidal perturbation of amplitude«H0

and wave numberk is imposed, and the temporal evolutio
of this disturbance is followed. The extension of the dom
in the x-direction is equal to one half the wavelength of t
initial perturbation; therefore, the lateral boundaries are sy
metry planes and the wavy motion developed is repeate
both sides of this domain.

Fluid motion is governed by Navier–Stokes and con
nuity equations. These expressions are made dimension
by means of the following scales:p/k5pH0 /a for lengths,
2p/v for time, vH0/2a for the velocities andr(vH0/2a)2

for pressure and stresses. Thus, the equations expressing
servation of momentum and mass are

]v

]t
1v"¹v52¹p1

1

Re
¹•@¹v1~¹v!T#

1
1

Fr
@F cos~2pt !21# j , ~1!

¹"v50, ~2!

where Re5rvpH0
2/2ma2 is the Reynolds number, F

5v2H0/4pga is the Froude number andF5a0v2/g gives
the ratio between the external imposed force and the gr
tational force. The initial perturbation in dimensionless for
is

h~0,x!5a/p@11« sin~px2p/2!#, 0<x<1. ~3!

The boundary conditions required by Navier–Stokes eq
tions are summarized in Fig. 1 whereu andv are thex- and
y-components of the velocity vector, respectively. At the b
tom wall the nonslip condition is imposed while at the late
planes, symmetry is required.

At the free surface, the adjacent gas phase exerts
normal stresses through its pressure which is chosen as
datum pressure and is arbitrarily set equal to zero; theref
continuity of stresses at the interface is expressed as

FIG. 1. Schematic representation of the flow domain, boundary conditi
and coordinate system adopted.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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n"T5
1

We

dt

ds
, y5h~ t,x!, ~4!

whereT is the stress tensor on the liquid side of the int
face,n is the outward pointing unit normal to the free surfa
and t is the unit tangent to the interface. W
5prv2H0

3/4sa3 is the Weber number. Due to the hypot
eses stated at the beginning of this section, surface tensi
uniform and constant; therefore, the tangential componen
the stresses at the free surface vanishes.

The free surface is a material surface because mass i
transferred through it. The expression of mass conserva
is the kinematic condition that for a two-dimensional flow
the (x,y) plane is

v5
]h

]t
1u

]h

]x
, y5h~ t,x!. ~5!

The free surface requires boundary conditions; we imp
symmetry conditions atx50 andx51.

III. NUMERICAL TECHNIQUE

The Galerkin/finite element method is used to obtain
spatial discrete form of the governing equations while
free surface location is traced with the aid of a suitable
rametrization~Kistler and Scriven14!.

The flow domain is tessellated into quadrilateral e
ments, the vertical sides of any element are spines with b
points located at fixed values of thex-coordinate, while the
shape and location of the horizontal sides depend on thos
the free surface. Each quadrilateral element is mapped
parametrically onto a unit square with coordinates~j,h!,
0<j, h<1 by means of nine node biquadratic basis functio
(F i(j,h)),

x~j,h!5(
i 51

9

xiF i~j,h!, ~6!

y~ t,j,h!5(
i 51

9

yi~ t !F i~j,h!, ~7!

where (xi ,yi(t)) are the nodal coordinates of the eleme
The above transformation applied to all the elements of
flow domain defines the computational domain in which
free surface is a coordinate line and it is approximated by
one-dimensional specialization of the biquadratic basis fu
tions,

yFS5(
i 51

3

hi~ t !F i~j,h51!. ~8!

In Eq. ~8!, hi are the coefficients of the free surface para
etrization and each one of them represents the distance a
a given spine from thex-axis to the gas–liquid interface.

Mixed interpolation is used to approximate the veloc
and pressure fields; consequently,

v~x,t !5(
i 51

9

vi~ t !F i~j,h!, ~9!
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p~x,t !5 (
k51

4

pk~ t !Ck~j,h!, ~10!

wherevi(t) andpk(t) are the nodal values andCk(j,h) are
the four bilinear basis functions defined in the unit squar

The numerical scheme employed is similar to that p
posed by Greshoet al.15 to analyze transient flows with th
modifications introduced by Kheshgi and Scriven13 to adapt
this technique to the solution of transient free surface fl
problems. Very briefly, the governing Eqs.~1! and ~2! are
weighted with the basis functions employed to interpol
the velocity and pressure fields, respectively, and they
integrated in the flow domain; the kinematic expression@Eq.
~5!# is weighted with the one-dimensional specialization
the biquadratic basis functions and it is integrated along
free surface. A set of nonlinear ordinary differential equ
tions is thus obtained. To evaluate the time derivatives
pearing in the residuals (]v/]t and ]h/]t), one must take
into account that the points of the mesh are moving; sinc
the ~j,h! plane the nodal coordinates remain unchang
these derivatives can be though of as time derivatives
fixed point in the computational domain. Then,

]v

]t
5 v̇2 ẋ"¹v, v̇5(

i

dvi

dt
F i~j,h!, ~11!

where ẋ is the velocity of a point with fixed isoparametri
coordinates which are evaluated from Eqs.~6! and ~7!.

The set of nonlinear ordinary differential equations
reduced to a set of nonlinear algebraic equations using
following finite difference approximation:

A trapezoidal rule corrector is used to approximate
time derivatives~v̇,ẋ! in the residuals of Eqs.~1! and~5!, and
the resulting set of equations is solved by means of the o
step Newton’s method. To provide an accurate approxim
tion for nodal values of the velocity and free surface coe
cients, at time tn, the second order Adams–Bashfor
predictor is used; pressures are initialized with values co
sponding to the previous time step. The predictor also p
vides an estimate of the time discretization error which
controlled with the time step size, and is kept small enou
to obtain convergence in just one Newton iteration. Two tim
steps are computed, one is based on the norm of the velo
and the other on the norm of the free surface coefficients,
smallest one is chosen in the calculations.

The criteria adopted to select the appropriate finite e
ment mesh were based on the following physical aspect
the problem.

~1! The motion of the fluid is more intense near the fr
surface, where larger gradients of the velocity occur. The
fore, nodes are concentrated at the free surface and its v
ity.

~2! A boundary layer is developed in the liquid ju
above the solid wall; consequently, the mesh is refined in
region.

~3! The number of elements in thex-direction turns on
the wave number~a! and on the parameterF.

We next exemplify the type of numerical experimen
carried out to determine an appropriate mesh when nonlin
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. ~a! Predictions of the time
evolution of one end of the free sur
face for point labeledc in Fig. 3, com-
puted with three different meshes.~b!
Predictions of the time evolution of
the interfacial area for point labeledc
in Fig. 3, computed with three differ-
ent meshes.
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effects are important, that is for large values of the exter
amplitude. They correspond to points labeledc andd in Fig.
3 but they are applicable to any of the solutions presente
this work. We employed the following three meshes:NEX
515 andNEY59, NEX530 andNEY59, NEX550 and
NEY530. In all these meshes the relationship between
number of elements in thex and y direction was selected
taking into account the aspect ratio of the computational
main, in order not to have very distorted elements.

In Figs. 2~a! and 2~b! we illustrate the evolution in time
of the numerical solutions corresponding to pointc in Fig. 3.
We see that the three meshes predict the existence of a
odic state although the maximum amplitude attained by
free surface is clearly variable when the coarsest grid is
ployed@see Fig. 2~a!#; differences in the evolution of the fre
surface are slightly noticeable when the solutions compu
with the other two meshes are compared. The same con
Downloaded 08 Sep 2003 to 200.9.237.242. Redistribution subject to A
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sion can be inferred from results depicted in Fig. 2~b! where
the evolution of the interfacial area is illustrated.

To determine if this mesh was suitable to accurately p
dict not only periodic solutions but also the conditions und
which the amplitude initially imposed to the free surfa
increases without bounds, we performed similar numer
tests for points located in Region 1-I of the stability map
one of those points~labeledd! is shown in Fig. 3. Results
that are not illustrated here, show that with none of the
meshes a periodic solution is obtained, being the evolutio
the free surface computed with the three meshes very sim

From the above numerical experiments, we conclu
that the meshNEX530 andNEY59 is suitable to follow
the time evolution of the system when the initial liquid dep
is equal to 531025 m even when nonlinear effects are im
portant. A more refined mesh would only lead to an unn
essary increase of the CPU time.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. Stability chart in the
F-a (a0-k) plane for H055
31025 m.
ss
il-
m

l
,

he
lm

id

e
hts
ely
he

is

me
IV. NUMERICAL RESULTS

In order to determine the influence of the film thickne
on the stability of liquid layers under forcing vertical osc
lations, we have carried out computations with equilibriu
depths between 1024 m and 1025 m. The physicochemica
properties correspond to water at 20 °C; thus, we haver
5103 kg/m3, s57031023 N/m, andm51023 Pa s. The os-
cillation frequency of the container~f! was set at 29 kHz
while its amplitude was widely varied.

In this section we first discuss the stability charts of t
system and then we analyze the influence of the initial fi
thickness (H0) on the velocity fields.
Downloaded 08 Sep 2003 to 200.9.237.242. Redistribution subject to A
A. The stability maps

The numerical solutions pertaining to each initial liqu
depth give rise to a stability chart on theF-a plane. In Figs.
3, 4, and 5 the charts forH0 equal to: 531025 m, 2.27
31025 m, and 1025 m, respectively, are illustrated. Thes
maps and those obtained for the other equilibrium heig
considered in this work, not shown here, are qualitativ
similar; therefore, we first give a detailed description of t
chart corresponding toH05531025 m and then we point
out the main differences observed when this variable
modified.

Every point of the stability maps represents the outco
FIG. 4. Stability chart in the
F-a (a0-k) plane for H052.27
31025 m.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 5. Stability chart in theF-a (a0

2k) plane forH051025 m.
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of the time evolution of a rather small initial perturbatio
imposed to the motionless liquid. Circles indicate stable s
ations characterized by perturbations whose amplitudes
cay in time, while crosses represent unstable cases chara
ized by perturbations whose amplitudes increase with
bounds or that evolve toward time periodic solutions. To
cilitate the analysis of the results each point drawn in Figs
to 5 may be regarded either as a point on the (F-a) plane or
on the (a0-k) plane.

It is easy to notice that the data reported in Fig. 3 can
grouped into four different regions identified as 1, 2, 3, a
4; the same situation could be detected in Figs. 4 an
although in these cases due to the narrower range of w
numbers investigated, we did not explore points pertainin
region 3. In regions 1–3, the relation existing between
dominant frequency of the wave appearing on the free
face and the frequency imposed on the motion of the c
tainer is equal to 1/2, 1 and 3/2, respectively and in all
them only one elementary cell is observed. Region 4 pres
subharmonic resonance~the free surface vibrates with a fre
quency equal to one half of the applied external frequen!
but two elementary cells are formed. Since a reduction in
dimensionless wave number,a, implies a proportional in-
crease of the domain length, the points located here sh
probably be a duplication of points lying in region 1, a h
pothesis that will be confirmed later. Also, we have detec
three subharmonic elementary cells when the wave num
was further reduced. Although other unstable regions can
found for larger values ofa, we have not investigated them
because they are associated with too high external fo
and, consequently, they have not practical interest.

Results illustrated in Fig. 3 show that regions 1 and
overlap for values ofF.45 000 but the other regions rema
separated from one another in agreement with the linear
bility analysis reported by Benjamin and Ursell.2

The instability threshold in each region is characteriz
by a single pair of values ofF anda: (FC5aCv2/g,aC); if
F goes beyond the critical value disturbances with a w
Downloaded 08 Sep 2003 to 200.9.237.242. Redistribution subject to A
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number within a specific range will be excited. That is, t
resonance phenomenon is first observed when there is a
tuning between the natural frequency of the system and
frequency of the imposed motion.

The wave number at the instability threshold increases
one moves from region 1 to region 3; also, the applied fo
required to attain that threshold increases in the same
suggesting that larger dissipation effects associated to st
ger spatial gradients may be responsible for the higher va
of F needed to destabilize the system.

The four regions illustrated in Fig. 3 can be related to t
theoretical work presented by Benjamin and Ursell2 for an
ideal fluid. In their formulation the position of the interface
described by a series whose coefficientscm(t) satisfy the
Mathieu equation, that is

d2cm

dT2
1@pm22qm cos 2T#cm50, ~12!

where T5vt/2. It is well known that the stability of the
solutions of this equation depends on the values of the
rametersp and q that for them mode are defined by the
following expressions~Eq. 2-13 in Ref. 2!,

pm5
vm

2

~v/2!2
, vm

2 5km tanh~kmH0!S g1
km

2 s

r D , ~13!

qm52kma0 tanh~kmH0!, ~14!

where vm is the natural frequency of modem and km

5mk. For all points located in regions 1 to 3 of the stabili
map shown in Fig. 3, one elementary cell is observed; th
we employedm51 in Eqs.~13! and~14! to evaluatep andq
there, while for those points located in region 4 where t
elementary cells are formed, we putm52. The resulting
points (p,q) are illustrated in Fig. 6, where again crosses a
circles represent unstable and stable solutions, respecti
Additionally, the boundaries of the regions predicted by t
linear theory are shown.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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It is clear that our results representing unstable evo
tions of the free surface are located within the three regi
predicted by the linear stability theory. Nevertheless, the
bility limits are translated toward values ofq.0. The param-
etersF andq have similar meaning because both depend
the amplitude of the external vibration. Then, we can c
clude that when the viscous effects are considered, a
tuning between the frequency of the imposed force and
natural frequency of the system is not enough to prod
resonance; it is also required thatF be larger than a critica
value. These results are in agreement with the theore
analysis reported by Kumar and Tuckerman8 and by Cerda
and Tirapegui9 for a slightly viscous fluid.

When points located in region 4 are mapped into
(p-q) plane, they all lie in region 1 of Fig. 6, confirming th
hypothesis that region 4 is a replication of region 1. A care
inspection performed of the corresponding numerical so
tions have shown that this is indeed the case.

In order to detect the influence of the film thickness
the onset of the instability, we have mapped the stable po
located close to the limits of region 1 in Figs. 3, 4 and 5 in
the (p,q) plane using Eqs.~13! and ~14!; the result is de-
picted in Fig. 7. As it is expected, the extension of the u
stable region is reduced, not only because the thresho
shifted toward larger values ofq ~that is, larger amplitudes o
the imposed force! but also because the lower limit is shifte
toward larger values ofp, asH0 is reduced.

With the purpose of validating the numerical solution
we have solved the viscous model reported by Kumar
Tuckerman8 for the same initial liquid depths considered
Figs. 3 to 5. The values ofa0 obtained for each wave numbe
a selected were then mapped into the (p,q) plane using Eqs.
~13! and ~14!, and finally the stability limits for the subhar
monic region corresponding to eachH0 were illustrated in

FIG. 6. Comparison of numerical results with the linear theory by Benja
and Ursell.
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dashed lines in Fig. 7. It is evident that the agreement
tween our numerical solutions and those calculated with K
mar and Tuckerman’s model is excellent. That is, the num
cal solution accurately reproduces the boundaries of
unstable regions predicted by the linear stability analysis
the full hydrodynamic problem.

One of the practical applications of the problem und
study is the production of sprays. Drops are formed from
crests of high capillary waves. Therefore, it would be use
to investigate the condition under which the amplitude of
free surface waves increases without bounds. With this p
pose, we have closely examined the numerical solutions
cated in region 1 of the stability charts presented in Figs. 3
and we have delimited the subregions labeled 1-I, which
approximately defined by dashed-lines in the maps. For
points inside these zones our numerical predictions sho
just before the computation breaks down—almost cha
free surface evolutions and wave amplitudes increasing w
out bounds, suggesting that these points correspond to va
of the parameters in which the atomization of the liqu
might occur. Obviously, these solutions cannot be detec
with simpler models based on the assumption of small f
surface deformations.

An interesting feature of the results obtained is that
location of the subregion 1-I depends on the film thickne
In fact, for the larger values ofH0 considered in this work,
this zone is located near the upper bound of region 1~see
Figs. 3 and 4!, while for the thinnest value of the liquid laye
it is located near the lower bound of the subharmonic reg
~see Fig. 5!. In the first case, our results agree with the e
periments and the numerical solutions reported by Ji
et al.16 in a range of very small forcing frequencies~3.15–
3.34 Hz!, that is, for a long wave.

To detect the origin of the differences induced by t
initial film thickness on the location of subregion 1-I, w
have analyzed some of the solutions that are located nea
boundary of this zone when the initial liquid depth is equal
531025 m ~Fig. 3! and 1025 m ~Fig. 5!. These solutions are

n

FIG. 7. Stability limits for selected values ofH0 near the threshold of region
1 ~Figs. 3–5! and comparison of numerical results with Kumar and Tuck
man’s model.
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FIG. 8. Prediction of the time evolution of the film
thickness atx50 andx51 for ~a! point labeleda in
Fig. 3 and~b! point labeledb in Fig. 5.
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for a fixed value ofF, and for a varying within the range
delimited by the lower and upper branches of region 1 in
corresponding stability map. We tookF equal to 20 000 and
67 759, forH05531025 m andH051025 m, respectively.

The examination of the free surface for the thicker liqu
layer (H05531025 m) once a time-periodic solution is de
veloped for each value ofa, shows that the amplitude of th
wave monotonically increases as the wave number is a
mented, almost until the upper branch of the neutral stab
curve is reached; in fact, from our numerical solutions n
presented here, we found that the wave amplitude incre
from 1.331025 m, when a52.05, to 7.3831025 m for
a52.86.

When the same analysis is carried out forH051025 m
andF567 759, the amplitude of the wave corresponding
the time periodic-state achieved by the system at each
lected value ofa, first increases and then diminishes as
dimensionless wave number is augmented, as in the prev
case; nevertheless, according to our numerical solutions
maximum amplitude computed is approximately equal
2.6531025 m and corresponds toa'0.57~point labeledb in
Fig. 5!, a value closer to the lower bound of region 1.

To illustrate the relevant features of the solutions dev
oped near the onset of region 1-I, forH0 equal to 5
31025 m and 1025 m, we have depicted for the points la
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beleda andb in Figs. 3 and 5, respectively, the time evol
tion of the free surface height at both ends of the compu
tional domain, i.e., at the points that initially were the cre
and the trough of the wave@Figs. 8~a! and 8~b!#. In Figs. 9~a!
and 9~b! we present the corresponding results of transfor
ing the waveforms into Fourier space using the fast Fou
transform~FFT!.

Results illustrated in Fig. 8 show that the amplitude
the free surface waves increase from the perturbations
tially imposed up to certain final values in the two cas
considered. WhenH051025 m a time periodic-state is rap
idly attained, while forH05531025 m a repeated pattern i
more difficult to detect. The results of the FFT analysis p
sented in Figs. 9~a! and 9~b!, confirm that in both cases th
dominant mode has a frequency equal to (1/2)f ; however,
the spectra for pointa is not as well defined as that for poin
b. This fact added to the relatively important peak that a
pears at a frequency equal to (1/4)f , contribute to the irregu-
lar aspect of the evolution of the amplitude of the free s
face observed in the first case@see Fig. 8~a!#.

The FFT analysis carried out at pointb reveals the pres-
ence of smaller peaks at frequencies equal to multiples off: f,
(3/2)f , 2f ,...; that is, higher harmonics are also excited a
they are responsible for the departure of the waveform fr
a sinusoidal curve@see Fig. 8~b!#.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 9. ~a! and ~b! Discrete Fourier
transform of the temporal evolution a
x50 for pointsa andb, respectively.
i

d

e
in
th
o

nc
s
k

is

of
ak,

all
sid-
rce
ults
rest
e of
ori-
In order to detect the possible mechanisms involved
the breaking of the free surface waves for a large (H055
31025 m) and a very thin (H051025 m) liquid layer, we
have examined the evolution of the free surface shapes
ing a short time interval~about half cycle! for casesa andb
~Fig. 10!. The intervals chosen are enclosed by a rectangl
Figs. 8~a! and 8~b!, and the times selected are indicated
the insets of these illustrations where an enlarged view of
framed regions is shown. The shapes corresponding to p
a ~1–8! are drawn with solid line while those for pointb
~9–15! are depicted in dashed line.

It is easy to see that the more remarkable differe
between the curves corresponding to these two cases, i
steepness of the wave that is the ratio between the pea
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peak amplitude and the wavelength; in fact, this quantity
approximately equal to 0.65 forH05531025 m ~point a!,
and to 0.24 forH051025 m ~point b!.

The profiles corresponding to pointa, show that as the
right side of the domain moves upward a large quantity
liquid is displaced toward the crest giving rise to a high pe
where the radius of curvature of the interface becomes sm
and, consequently the capillary forces become large. Con
ering that an increase of the amplitude of the external fo
will produce a higher and more peaked wave, these res
suggest that drops might be formed at the maximum c
elevation. It is interesting to note that, due to the presenc
higher order harmonics, the free surface never becomes h
zontal during the time interval.
ted
ith

al-
FIG. 10. Predicted free surface shapes for selec
times corresponding to the half cycle enclosed w
dashed lines in Figs. 8~a! and 8~b!. The curves drawn in
solid lines~1–8! are forH05531025 m and those de-
picted in dashed lines~9–15! are forH05131025 m;
the curves are numbered sequentially for increasing v
ues of time.
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FIG. 11. Critical amplitudes vsH0 for region 1 (aC)
and for subregion 1-I (aCI) ~inset!.
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If we now consider the sequence of wave shapes il
trated in dashed lines forH051025 m, we see that the influ
ence of the bottom boundary on the evolution of the sys
becomes very important. In fact, in this case, a very t
liquid film is formed during the evolution~the minimum liq-
uid height at the trough of the wave is smaller than
31026 m in curve 14!. As the height of the liquid located a
the right of the domain increases, a small wave travels
ward the left; therefore, the free surface presents a depres
separating two regions: one where there is a large amou
liquid and the other where a thin liquid film exists; the latt
will resist the leveling of the liquid layer once the highe
liquid elevation is reached at the other end of the domain
this case, an increase of the amplitude of the external vi
tion should produce a larger crest and a thinner film, a s
ation that might favor the film disruption instead of the eje
tion of drops.

The large magnitude of the capillary forces compared
the effective gravity forces, is responsible for the round
crests presented by the waves during the cycle; that is, on
verge of the numerical break down of our solutions we
not see the flat crests observed—for low excitation frequ
cies and when the capillary effects are much lower—
Jianget al.16

Finally, in the two cases analyzed, the temporal symm
try is broken, a result that can also be inferred from Figs. 8~a!
and 8~b!.

Results depicted in Figs. 3, 4, and 5 and those not
ported here for other selected values ofH0 , show that the
stability charts are qualitatively similar. Indeed, the same
gions previously described are detected and, at the ons
the instability, the interface is always subharmonically e
cited with a frequency equal to one half the frequency of
external vibration; however, the following differences can
observed.

~1! The minimum value ofF required to produce a
wavy interface, which in our case corresponds to a minim
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in forcing amplitude (aC) since the applied frequency is kep
constant, increases as the depth of the liquid layer decrea
that is, the system becomes more stable if viscous effects
relatively larger. Also the minimum value ofF associated to
the rupture of the free surface increases as the depth o
liquid layer is reduced.

~2! The wave numberk5kC of the elementary cell de
veloped at the onset of the instability increases as the
thickness diminishes.

Next, we discuss both differences in detail.

B. Critical value of a0 as a function of H0

In Fig. 11, the value of the critical amplitude (aC) is
illustrated as a function ofH0 at the threshold of the firs
subharmonic region~region 1 in Figs. 3–5!. It is readily seen
from our numerical predictions that larger amplitudes of t
external force are required to destabilize a system as
initial liquid height is reduced; also, the effect of the film
thickness becomes important forH0<531025 m. In fact, if
the depth of the liquid layer is reduced below this value,
external force will have to be greatly augmented to turn
system unstable, while it remains almost constant forH0

larger than 531025 m.
It is of interest to compare our values of critical wav

amplitude with those calculated with the exact solution of
linear viscous hydrodynamic problem reported by Kum
and Tuckerman.8 Therefore, we have also depicted in Fig. 1
the minimum amplitude required to destabilize the system
a function of the initial liquid depth obtained by solving th
problem. It is easy to see that the agreement is excellen
fact, the largest difference observed is below 2.5% an
corresponds toH051024 m.

The open squares depicted in the inset of Fig. 11, rep
sent the minimum forcing amplitude (a05aCI) required to
produce a solution in region 1-I for four values of the initi
liquid depth considered in this work. As it is expected,aCI
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 12. Threshold values ofk vs H0 for region 1 when
f 529 kHz.
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diminishes as H0 is augmented; however, forH0.5
31025 m, aCI becomes almost insensitive to changes in fi
thickness, this result confirms that the behavior of the sys
is no longer affected by the presence of the bottom wall.

As we have just mentioned, the onset of subregion
occurs at larger amplitudes of the external force whenH0

diminishes; nevertheless, the ratio between the amplit
values at the onset of subregion 1-I and at the threshol
region 1, i.e.,aCI /aC , diminishes as the initial liquid depth
decreases. It is easy to verify from the results reported in
11, that this ratio is approximately equal to 7 and 3 forH0

51024 m andH051025 m, respectively.
Goodridgeet al.17 in their experimental work on the pre

diction of the threshold amplitude for drop ejection, rep
that this value depends on the frequency of the externa
bration imposed to the system. These authors found tha
the case of water, the critical amplitude for the inception
drop ejection (aD) is given byaD52.39(s/v2r)1/3; there-
fore, for the system analyzed in this work,aD'331025 m a
value larger than those reported here for the onset of re
1-I in the inset of Fig. 11.

C. The critical value of the wave number as a
function of H0

In Fig. 12 the wave numbers of the elementary ce
formed at the threshold of region 1,k5kC , are plotted as a
function of the initial film thickness, the points there illu
trated represent our numerical solutions while the continu
line corresponds to the inviscid solution, that is,kC is evalu-
ated from

vm5Atanh~kmH0!S km
3 s

r
1kmgD , ~15!

wherevm514 500p s21 and m51; also, the values ofkC

calculated with Kumar and Tuckerman’s model are shown
dashed lines. These results show that the influence of
bottom wall of the container becomes noticeable when
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film thickness is smaller than 531025 m. Thus, for larger
values of the initial liquid depth the critical wave numb
remains almost constant, while ifH0 is below 531025 m,
kC rapidly increases as the initial film thickness diminishe
Although either in the inviscid or in the viscous case, t
solid wall affects the flow through the normal boundary co
dition deviating the liquid in its vicinity, we see that the wav
numbers of our full model are larger than those predicted
Benjamin and Ursell2 but, as the results illustrated show, the
are in very good agreement with those evaluated with
model reported by Kumar and Tuckerman.8 In fact, these
authors found that in the range of low viscosity, an increa
of this property reduces the value predicted for the criti
wavelength if viscous dissipation in the bulk is taken in
account and viscous dissipation at the solid boundary is
considered. In the present case, we observe that as the i
film thickness decreases, the differences between the pre
tions of the complete model and those of the linear theo
increase; thus, viscous effects reduce the length of the
ementary cell at which the resonance phenomenon is
served. Our numerical solutions show that this reduction
0.57% whenH0 is equal to 531025 m and 3.9% when the
initial depth is 1025 m.

D. The evolution of the free surface and the velocity
fields at the onset of the instability „region 1 …

In this section we analyze the influence of the init
liquid depth on the flow fields developed near the thresho
The two cases studied correspond to values ofH0 equal to
1024 m and 1025 m, that are the maximum and minimum
initial liquid depth considered in this work; the thresholds f
these two cases were obtained atF53400,a54.95, andF
526 000,a50.63.

In Figs. 13~a! and 14~a! we present the time evolution
of the x-points that initially are the trough of the wave fo
these two cases. Insets of these figures depict the inter
location of the liquid layer atx50 over approximately half
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 13. ~a! Temporal evolution of the film thickness atx50 near the threshold of the first subharmonic region forH051024 m. ~b! Streamlines corre-
sponding to the selected times illustrated in the inset of~a!; the figures are ordered alphabetically for increasing values of time.
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cycle and the dots shown correspond to selected time
which the streamlines have been evaluated. The results
portrayed in Figs. 13~b! and 14~b! for H0 equal to 1024 m
and 1025 m, respectively.

It is easy to notice@see Figs. 13~a! and 14~a!# that the
Downloaded 08 Sep 2003 to 200.9.237.242. Redistribution subject to A
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re
wave amplitude at the free surface increases from the
tially imposed perturbation until the constant value cor
sponding to the time periodic solution is achieved. A simp
analysis based on the fast Fourier transform confirms that
period of the free surface oscillation is twice the peri
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 14. ~a! Temporal evolution of the film thickness atx50 near the threshold of the first subharmonic region forH051025 m. ~b! Streamlines corre-
sponding to the selected times illustrated in the inset of~a!; the figures are ordered alphabetically for increasing values of time.
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of the external vibration; that is, the principal mode excit
is subharmonic in agreement with experimental results~see,
for instance, Hasegawaet al.18!. Also, the shape of the wav
is almost sinusoidal at the onset of the instability for all t
Downloaded 08 Sep 2003 to 200.9.237.242. Redistribution subject to A
values ofH0 considered in this work. This result contras
with the result reported by Murakami and Chikano11 in their
numerical study of this problem for a more viscous flu
~0.0072 Pa s! and at a much lower frequency of the extern
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vibration ~41 Hz!, who found that the critical waveform i
not sinusoidal. The analysis of the wave computed by th
authors using the FFT, shows the presence of odd~1/2v,3/
2v,5/2v,...! and even components~v,2v,3v,...! being the co-
efficients of the first two odd frequencies—which are t
largest—of the same order.

The streamlines illustrated in Fig. 13~b! for H0

51024 m correspond to the instants of time identified w
dots in the inset of Fig. 13~a!. The amplitude of the externa
force required to produce this motion is equal to 1.00
31026 m, and as we have already mentioned the impo
force is approximately equal to the minimum needed to
velop free surface waves with a frequency equal tov/2; also
the aspect ratio (L5kH0 /p) of the elementary cell formed
is nearly 1.57, a value almost equal to the inviscid flow ca

The sequence of streamlines presented in the fig
show the existence of two swirls, one near the bottom of
container and the other at the free surface, both recirculat
are present during a very short period of time. The sw
located on the solid wall is formed when the liquid is movi
from right to left and the cell height is almost maximum
the left side. Under these conditions, the pressure on
plate atx50 is larger than the pressure atx51; therefore,
the liquid located over the solid wall begins to move fro
left to right and a recirculating flow is developed. The size
this recirculation grows in time but is limited by the appea
ance of another swirl at the free surface, where the stron
motion takes place. After a very short period of time, all t
fluid moves together, but only in the zone located near
free surface the modulus of the velocity is important. That
the boundary layer that exists along the solid wall is ve
thin compared withH0 and does not affect the dynamics
the system.

Figure 14~b! illustrates, near the instability threshold o
region 1, the evolution of the flow pattern during half cyc
of a system with an initial liquid depth equal to 1025 m. The
amplitude of the external force required to produce this m
tion is equal to 7.67431026 m and the aspect ratio of th
elementary cell developed isL50.200; that is, a value
slightly larger than the one corresponding to the ideal c
~0.192!.

The sequence of streamlines depicted in this fig
shows that in this case there is only one swirl; in fact,
recirculation formed near the solid wall increases in size d
placing the liquid above it, and finally involves the who
cell. That is, the effects of the viscous boundary layer t
exists near the plate affect the motion of all the fluid, a si
ation completely different to that illustrated in Fig. 13~b! for
H051024 m.

Although the analysis of the velocity fields associated
Faraday waves here presented is limited to two cases on
shows that the streamlines developed for a slightly visc
fluid strongly depends on the viscous effects associate
the bottom wall. The vorticity generated at the solid boun
ary has almost negligible effects on the flow pattern when
liquid depth is large (H051024 m); however, it affects a
larger region asH0 diminishes, and it might even involve th
whole cell.
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V. CONCLUDING REMARKS

The time evolution of thin liquid films subject to a per
odic vertical oscillation, has been numerically analyzed
solving the Navier–Stokes equations for an incompress
liquid. The results portrayed pertain to a slightly visco
fluid; in fact, the values employed for the physicochemic
properties of the liquid were those of water. From our n
merical results we built charts delimiting instability region
in theF-a plane. These regions nicely fit into the instabili
zones determined almost 50 years ago by Benjamin
Ursell for an ideal fluid; nonetheless, our results occu
these zones only partially, making evident the stabilizing
fluence of viscosity as previously reported by Kumar a
Tuckerman and Cerda and Tirapegui. Moreover, the stab
limits numerically determined are in excellent agreem
with the limits of the linear stability analysis presented
Kumar and Tuckerman.

We have studied the effect of the thickness of the liqu
film on Faraday’s phenomenon. The results just presen
confirm previous findings obtained by linear stability ana
sis; among them that stronger exciting forces are neede
produce unstable waves as the thickness of the film is
duced. Also, for the cases studied, that the lower boundar
the unstable regions in theF-a charts appears to move to
ward higher wave number values~see Fig. 6!.

To detect the amplitudes of the external vibration
which the breaking of the surface waves might take pla
we have delimited a region of the stability maps in which t
wavy motion of the free surface appears to increase with
bounds. Although a more complete numerical analysis c
cerning the evolution of the free surface is required, our
merical solutions show evidences that when the initial liqu
depth is very small, the instability process that produces
free surface disruption might be different from the drop eje
tion mechanism.

We have also confirmed, for the case under analysis,
a film thickness of about 531025 m delimits two zones of
clear different behavior; that is, if the film thickness is larg
than this value the force needed to turn the surface unst
is almost constant, and so is the length of the unstable w
appearing at the instability threshold. On the other hand
the film is thinner than 531025 m, the applied force at the
instability threshold increases almost exponentially as
thickness of the film is reduced; accordingly, the length
the wave appearing at the onset of the instability is rapi
reduced. Since we suspected that the reasons behind
change of behavior dwelled on viscous effects originated
the solid wall, we studied in detail the time evolution of th
flow fields for two systems with initial film thickness o
1024 m and 1025 m, respectively; i.e. well above and belo
the limit value just mentioned.

When the film thickness is large (H051024 m) the evo-
lution of the streamlines within a period of oscillation ev
dences that the vorticity generated at the wall is weak
does not interact with the surface motion. In fact, the flo
motion reverses by developing—at the interface—a t
boundary layer that rapidly grows and occupies the wh
cell. Thus, as long as the flow in the vicinities of the so
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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wall does not influence the flow at the interface, the thic
ness of the film becomes irrelevant for the instability p
cess, and the system is insensitive to changes inH0 .

A totally different situation occurs when the film thick
ness is small (H051025 m); in this case the time evolutio
of the streamlines shows that the vorticity generated at
solid wall rapidly invades the cell reaching the free surfa
and reversing the fluid motion on it. Consequently, given t
interaction, it seems reasonable that the instability proc
should strongly depend upon the value of the film thickne

In this work we have solved the full Navier–Stoke
equations without having recourse to the usually emplo
simplifications; e.g., Stokes flow assumption and the use
linear damping terms to account for viscous forces. T
methodology employed allowed the construction of stabi
maps characterized by different equilibrium heights and
detection of the region where the breaking of the wa
might occur; it also provides valuable information throu
the time evolution of the easily portrayed pressure and
locity fields. This last feature will be extensively exploited
a future work where the presence of surfactant will be c
sidered.
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