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In this work a numerical analysis of two-dimensional Faraday waves is presented. This study is
based on direct numerical simulation of Navier—Stokes and continuity equations with appropriate
boundary conditions. Stability maps on tHe-g) plane for viscous liquid layers with equilibrium
depths between %10 °m and 10°m are presented; comparisons are made with the linear
stability predictions obtained with Benjamin and Ursell's model for an inviscid fluid and with
Kumar and Tuckerman’s model for a viscous fluid. Regions in which time-periodic solutions are no
longer obtained and nonlinear effects are relevant, and are also delimited and analyzed: in these
zones the disintegration of the free surface into drops may take plac008 American Institute

of Physics. [DOI: 10.1063/1.1601220

I. INTRODUCTION Ockendon and Ockenddrextended the analysis pre-
sented by Benjamin and Ursell to small but finite perturba-
When a container filled with a liquid is subject to a ver- tions and included nonlinear terms. Mifesroposed an av-
tical oscillation, waves may be formed at the gas—liquid in-eraged Lagrangian approach from which a weakly nonlinear
terface. For given physicochemical properties of the liquidmodel can be derived. He introduced additional linear terms
the required conditions under which a wavy interface is deinto the evolution equations to approximate the damping ef-
veloped depend on the frequency and the amplitude of thgects produced by viscous dissipation at the solid boundaries
imposed vibration, the depth of the liquid layer and the ge-and at the free surface when it is covered by a viscoelastic
ometry of the container. surface film, and by capillary hysteresis associated with the
The analysis of this system is a phenomenon closelyresence of contact linés.
related to the storage and transportation of liquids when the  These works were followed by others in which weakly
frequency of the external vibration is low, and to the atomi-nonlinear models were discussed. A review of these analyses
zation of liquids, at large frequencies of the imposed accelwas presented by Miles and HenderSdn 1990 and by
eration. The atomization of liquids is important in massMiles’ in 1993.
transfer operations in which the mean size of the drops Kumar and Tuckermd&nwere the first to derive and to
formed should be very small. Because the mean diameter &blve the linear stability problem for the interface of two
the drops ejected from the free surface is proportional to thgiscous fluids subject to a vertical oscillation, based on the
inverse of the excitation frequency, it is possible to produceomplete hydrodynamic problem; that is, Navier—Stokes and
very small drops if the period of the imposed oscillation is continuity equations. They show that under the effect of vis-
small enough. cosity the hydrodynamic system cannot be reduced to a set
This problem was first investigated by Faratiayho  of Mathieu equations with a linear damping term that is the
also reported that the frequency of the surface waves, todagsult of the phenomenological approach usually adopted in
known as Faraday waves, is equal to one half the frequence literature. A few years later, Cerda and Tirap&ger
of the external forcing. Many years later, Benjamin andstated the problem analyzed by Kumar and Tuckerman; the
Urself explained the phenomena reported by Faraday anaxpression obtained for the amplitude of the free surface
lyzing the linearized hydrodynamic inviscid problem. They integro-differential equationtakes into account viscous ef-
derived a set of Mathieu’s equations and showed that resdects in the bulk, near the bottom wall of the container and at
nance is responsible for the wavy motion. They also conthe free surface. In their analysis, these authors show that
cluded that the free surface is always unstable whenever thieir equation can be reduced to a Mathieu equation for a
ratio between any of the natural frequencies of the systemighly viscous fluid; however, it differs from that derived by
and the external one is equalné2 (n=1,2,3,...), even for Benjamin and Urséllfor the inviscid case.
amplitudes of the imposed acceleration infinitesimally small.  Although the literature related to Faraday waves is con-
This unrealistic result is a consequence of the ideal behaviatiderable, there are very few studies in which the numerical
assumed. solution of the complete hydrodynamic problem is consid-
ered. In fact, numerical works on two-dimensional Faraday
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Wright et all® analyzed the standing periodic waves Lo Lt
formed at the interface of two ideal fluids. They employed freesurfaced e ds Forced
two numerical methods, the boundary integral method when \ v:aa—'t’wg—f: . acceleration  Gravity
the density of one of the fluids is negligible and a vortex | FeosQmi)j -
sheet method, otherwise. In their analysis, both fluids wereu:()yT f
incompressible and they extended to infinity; the effect of ’ ‘;’;:O H
viscosity was considered including an extra term in the Euler 3; =° 'a—:=0 v y

equation.

Murakami and Chikand used the SMAC method to
solve the governing equatioidavier—Stokes and continuity FIG. 1. Schematic representation of the flow domain, boundary conditions,
equation$ with appropriate boundary conditions, once theyand coordinate system adopted.
were transformed into a boundary-time-dependent coordinate
system. The values of the parameters of the system analyzed

in that work were the same as those of the experiments réa_nd constant. The liquid layer is extended on the horizontal

ported by Lioubashevskét al 2 corresponding to a highly Plane &.z) and its equilibrium height measured along the
viscous fluid. Murakami and Chikano discussed the veIoc:it)y'(Cjoord'n"’ge]c isH,. Avertical ham;omchoscnlatmn of argph—
fields of the two-dimensional standing waves developed nedHd€@o and frequencyy Is imposed to the system in order to

the onset of the instability; they also investigated numeri-destabilize the free surface; since the reference frame

cally their stability to two-dimensional disturbances in order""dOpI"ed(s,ee Fig.d;hisdattacheq to the Isolid'wall the external
to reproduce the localized state reported by Lioubas;hevsk"fccel3 erﬁpon IS I? ed to g'fdaVIty alcce erez;[!on. . 5
et al. However, the uniform standing-waves proved to be N this work we consider only two-dimensioné2-D)

stable, suggesting that the localized states are a threglotions of the liquid, then its height can be expressed in

dimensional phenomenon. dimen_s_ionless form_ als(t,_x). . .

In this work we study the evolution of a thin layer of a Initially, a 2-D s!nq50|dal perturbation of amplltude-lol
liquid subject to a vertical periodic acceleration of high fre- and wave numbek IS imposed, and the temporal evolut|on
quency by numerically solving the full Navier—Stokes equa—Of this disturbance is followed. The extension of the domain

tions. Attention is restricted to the two-dimensional stability " the x-direction is equal to one half the wavelength of the
problem as in the abovementioned analysis.

initial perturbation; therefore, the lateral boundaries are sym-
The numerical technique employed is based on th etry planes and the wavy motion developed is repeated at
Galerkin/finite element method combined with a suitable pa-

oth sides of this domain.
rametrization of the free surfa¢kheshgi and Scriver) that

Fluid motion is governed by Navier—Stokes and conti-
allows, at each time step, the simultaneous solution of th uity equations. These expressions are made dimensionless
complete set of governing equatioriSlavier—Stokes and

y means of the following scales/k=mH,/« for lengths,
continuity) and boundary conditions. 2@lw for time, wH /2« for the velocities ahd)(a)HOIZa)_2
The main goals of this work ar€) to build the stability for pressure and stresses. Thus, the equations expressing con-
charts for various liquid depths in order to determine th

eservation of momentum and mass are
influence of this parameter on the stability of the systéin; v
to validate our numerical predictions by comparing them — Zy +V-Vv=—Vp+ R—eV'[VV+(VV)T]
with results obtained from linear stability analysis; e.g., those
produced by Benjamin and Ursell for an ideal fluid and by
Kumar and Tuckerman for a viscous orfi;) to delimit the
regions in which our numerical predictions are unstable and
the motion of the free surface is so intense that standing V-v=0, @)
waves are no longer preserity) to analyze the velocity where Re-pomH¥2ua? is the Reynolds number, Fr
fields in order to relate the viscous effects associated to walk ,?H/4rga is the Froude number arfel=a,w?/g gives
friction in thin films to the minimum force required to desta- the ratio between the external imposed force and the gravi-

bilize the system. Pointiii) is important because it locates tational force. The initial perturbation in dimensionless form
regions of the stability maps where drops may be produceg

and ejected from the free surface.

1 .
+Er[F coq27t)—1]j, (1)

h(OX)=al/m[1+e sin(mx—m/2)], O=x=<1. 3

The boundary conditions required by Navier—Stokes equa-
tions are summarized in Fig. 1 whemeandv are thex- and

A Newtonian and incompressible liquid of viscosity = y-components of the velocity vector, respectively. At the bot-
and densityp, is lying on a horizontal solid plate. The air tom wall the nonslip condition is imposed while at the lateral
above the liquid is regarded as inviscid, it exerts only normaplanes, symmetry is required.
stresses along the gas-liquid interface and its pressure is uni- At the free surface, the adjacent gas phase exerts only
form everywhere. The system is isothermic and there are natormal stresses through its pressure which is chosen as the
surface active agents present; therefore all the physicochendatum pressure and is arbitrarily set equal to zero; therefore,
cal properties including the surface tensi@n are uniform  continuity of stresses at the interface is expressed as

Il. MATHEMATICAL FORMULATION
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1 dt 4
NT=Wegs Y=NX, @ PO =2, POWSE D), (10

whereT is the stress tensor on the liquid side of the inter-
face,n is the outward pointing unit normal to the free surface

and t is the wunit tangent to the interface. We . S

2,43 3 The numerical scheme employed is similar to that pro-
= mpw Holdoa” is the Weber number. Due to the hypoth- .0 s reshet all® to analyze transient flows with the
eses stated at the beginning of this section, surface tension RS y ) Y

) : ; odifications introduced by Kheshgi and Scriteto adapt
uniform and constant; therefore, the tangential component qf . : ; )
: is technique to the solution of transient free surface flow
the stresses at the free surface vanishes.

The free surface is a material surface because mass is n%rt'o_blems. \(ery brlefly,_the governing Eqel) and (_2) are
weighted with the basis functions employed to interpolate

transferred through it. The expression of mass conservatiO{F1e velocity and pressure fields. respectivelv. and thev are
is the kinematic condition that for a two-dimensional flow in . y P ' b Y y

integrated in the flow domain; the kinematic expresgieq.
(5)] is weighted with the one-dimensional specialization of
dh dh the biquadratic basis functions and it is integrated along the
v=—rtu—,  y=h(tx). (5 free surface. A set of nonlinear ordinary differential equa-
) . i tions is thus obtained. To evaluate the time derivatives ap-
The free surfaqg requires boundary conditions; we IMPOSBearing in the residualss¢/dt and dh/at), one must take
symmetry conditions a=0 andx=1. into account that the points of the mesh are moving; since in
the (¢,7) plane the nodal coordinates remain unchanged,
these derivatives can be though of as time derivatives at a

whereV'(t) andpX(t) are the nodal values an#¥(¢, ) are
the four bilinear basis functions defined in the unit square.

the (x,y) plane is

I1l. NUMERICAL TECHNIQUE fixed point in the computational domain. Then,
The Galerkin/finite element method is used to obtain the v . . : dv' i
spatial discrete form of the governing equations while the E_V_XVV’ V—Z WCD (&), (11)
free surface location is traced with the aid of a suitable pa- _
rametrization(Kistler and Scrivelf). wherex is the velocity of a point with fixed isoparametric

The flow domain is tessellated into quadrilateral ele-coordinates which are evaluated from E(.and (7).
ments, the vertical sides of any element are spines with base The set of nonlinear ordinary differential equations is
points located at fixed values of tixecoordinate, while the reduced to a set of nonlinear algebraic equations using the
shape and location of the horizontal sides depend on those &fllowing finite difference approximation:
the free surface. Each quadrilateral element is mapped iso- A trapezoidal rule corrector is used to approximate the
parametrically onto a unit square with coordinatgsy), time derivativegv,x) in the residuals of Eq¢1) and(5), and
0=<¢, »=<1 by means of nine node biquadratic basis functionghe resulting set of equations is solved by means of the one-

(®'(&,7)), step Newton's method. To provide an accurate approxima-
9 tion for nodal values of the velocity and free surface coeffi-
H i n
X(E )= XDi(& ), 6 cients, at timet", the second. qr.dgr Adqms—Bashforth
(&) Zl (&) © predictor is used; pressures are initialized with values corre-

sponding to the previous time step. The predictor also pro-
vides an estimate of the time discretization error which is
controlled with the time step size, and is kept small enough
P , to obtain convergence in just one Newton iteration. Two time
where ,y\(t)) are the nodal coordinates of the element'steps are computed, one is based on the norm of the velocity

The above transformation applied to all the elements of th%\nd the other on the norm of the free surface coefficients, the

flow domain defines the computational domain in which theSmallest one is chosen in the calculations.

free 3_urface_|s alcoord_mlr_:ltet!me afnt(;l] |t;)s: appdroxtl_mz;teq bfy the The criteria adopted to select the appropriate finite ele-
one-dimensional specialization ot the biquadratic basis UNCx,qnt mesh were based on the following physical aspects of

9
w¢m=§¢m@@m, (7)

tions, the problem.
s A (1) The motion of the fluid is more intense near the free
yFs=El h'(H)®'(§,7=1). (8)  surface, where larger gradients of the velocity occur. There-
1=

_ fore, nodes are concentrated at the free surface and its vicin-
In Eqg. (8), h' are the coefficients of the free surface param-ity.
etrization and each one of them represents the distance along (2) A boundary layer is developed in the liquid just

a given spine from the&-axis to the gas—Iliquid interface. above the solid wall; consequently, the mesh is refined in this
Mixed interpolation is used to approximate the velocity region.
and pressure fields; consequently, (3) The number of elements in thedirection turns on
9 the wave numbefta) and on the parameté.
v(x,t)=2 VI(O®DI(&,7), (9 We next exempli_fy the type of_numerical experime_nts
i=1 carried out to determine an appropriate mesh when nonlinear
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effects are important, that is for large values of the externasion can be inferred from results depicted in Figo)2vhere
amplitude. They correspond to points labetedndd in Fig.  the evolution of the interfacial area is illustrated.
3 but they are applicable to any of the solutions presented in  To determine if this mesh was suitable to accurately pre-
this work. We employed the following three meshBdEX  dict not only periodic solutions but also the conditions under
=15 andNEY=9, NEX=30 andNEY=9, NEX=50 and which the amplitude initially imposed to the free surface
NEY=30. In all these meshes the relationship between théncreases without bounds, we performed similar numerical
number of elements in thg andy direction was selected tests for points located in Region 1-1 of the stability maps;
taking into account the aspect ratio of the computational doene of those pointglabeledd) is shown in Fig. 3. Results
main, in order not to have very distorted elements. that are not illustrated here, show that with none of these
In Figs. 2a) and 2Zb) we illustrate the evolution in time meshes a periodic solution is obtained, being the evolution of
of the numerical solutions corresponding to pain Fig. 3.  the free surface computed with the three meshes very similar.
We see that the three meshes predict the existence of a peri- From the above numerical experiments, we conclude
odic state although the maximum amplitude attained by thé¢hat the mestNEX=30 andNEY=9 is suitable to follow
free surface is clearly variable when the coarsest grid is enthe time evolution of the system when the initial liquid depth
ployed[see Fig. 2a)]; differences in the evolution of the free is equal to 5<10~°m even when nonlinear effects are im-
surface are slightly noticeable when the solutions computegortant. A more refined mesh would only lead to an unnec-
with the other two meshes are compared. The same conclessary increase of the CPU time.
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IV. NUMERICAL RESULTS A. The stability maps

In order to determine the influence of the film thickness The numerical solutions pertaining to each initial liquid

on the stability of liquid layers under forcing vertical oscil- 4€Pth give rise to a stability chart on thea plane. In Figs.

. —5
lations, we have carried out computations with equilibrium3: 4: Sand 5 the c?arts for, equal to: 5<10°°m, 2.27
depths between Td m and 105m. The physicochemical <10 °m, and 10°m, respectively, are illustrated. These
properties correspond to water at 20°C; thus, we have, Maps and those obtained for the other equilibrium heights
=10°kg/m®, o=70x 10 3N/m, andu=10"3Pas. The os- considered in this work, not shown here, are qualitatively

cillation frequency of the containdff) was set at 29 kHz similar; therefore, we first give a detailed description of the
while its amplitude was widely varied. chart corresponding tél,=5Xx10"°m and then we point

In this section we first discuss the stability charts of theout the main differences observed when this variable is
system and then we analyze the influence of the initial filmmodified.
thickness Hg) on the velocity fields. Every point of the stability maps represents the outcome
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of the time evolution of a rather small initial perturbation number within a specific range will be excited. That is, the
imposed to the motionless liquid. Circles indicate stable situresonance phenomenon is first observed when there is a fine
ations characterized by perturbations whose amplitudes dédning between the natural frequency of the system and the
cay in time, while crosses represent unstable cases charactéequency of the imposed motion.
ized by perturbations whose amplitudes increase without The wave number at the instability threshold increases as
bounds or that evolve toward time periodic solutions. To fa-one moves from region 1 to region 3; also, the applied force
cilitate the analysis of the results each point drawn in Figs. 3equired to attain that threshold increases in the same way
to 5 may be regarded either as a point on thed) plane or  suggesting that larger dissipation effects associated to stron-
on the @q-k) plane. ger spatial gradients may be responsible for the higher values
It is easy to notice that the data reported in Fig. 3 can b@f F needed to destabilize the system.
grouped into four different regions identified as 1, 2, 3, and  The four regions illustrated in Fig. 3 can be related to the
4; the same situation could be detected in Figs. 4 and feoretical work presented by Benjamin and Ufsédr an
although in these cases due to the narrower range of wanudeal fluid. In their formulation the position of the interface is
numbers investigated, we did not explore points pertaining talescribed by a series whose coefficientdt) satisfy the
region 3. In regions 1-3, the relation existing between theMathieu equation, that is
dominant frequency of the wave appearing on the free sur- q
face and the frequency imposed on the motion of the con- 9 Cm _ _
tainer is equal to 1/2, 1 and 3/2, respectively and in all of  gT2 *LPm™ 28 cOS 2T Jen=0. (12
them only one elementary cell is observed. Region 4 presents , -
subharmonic resonancthe free surface vibrates with a fre- Where T=wt/2. It is well known that the stability of the
quency equal to one half of the applied external frequ)ancySOIUt'ons of this equation depends on the vaI_ues of the pa-
but two elementary cells are formed. Since a reduction in th&@Metersp and g that for them mode are defined by the
dimensionless wave numbes, implies a proportional in- following expressiongEq. 2-13 in Ref. 2
crease of the domain length, the points located here should w2
probably be a duplication of points lying in region 1, a hy- Pm= m
pothesis that will be confirmed later. Also, we have detected (wl2)?
three subharmonic elementary cells when the wave number _
was further reduced. Although other unstable regions can be Am = 2Kmdo tanktkmHo), (14
found for larger values of, we have not investigated them where w,, is the natural frequency of modm and ki,
because they are associated with too high external forces mk. For all points located in regions 1 to 3 of the stability
and, consequently, they have not practical interest. map shown in Fig. 3, one elementary cell is observed; then,
Results illustrated in Fig. 3 show that regions 1 and 4we employedn=1 in Egs.(13) and(14) to evaluate andq
overlap for values oF >45 000 but the other regions remain there, while for those points located in region 4 where two
separated from one another in agreement with the linear stalementary cells are formed, we pot=2. The resulting
bility analysis reported by Benjamin and Urs&ll. points (p,q) are illustrated in Fig. 6, where again crosses and
The instability threshold in each region is characterizedcircles represent unstable and stable solutions, respectively.
by a single pair of values df anda: (Fc=acw?/g,ac); if  Additionally, the boundaries of the regions predicted by the
F goes beyond the critical value disturbances with a wavdinear theory are shown.

k2
g+ %0) 13

w2=kntanhkHo)
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FIG. 7. Stability limits for selected values bify near the threshold of region
1 (Figs. 3—5 and comparison of numerical results with Kumar and Tucker-
man’s model.

, . . . . dashed lines in Fig. 7. It is evident that the agreement be-
FIG. 6. Comparison of numerical results with the linear theory by Benjamin . . .
and Ursell. tween our numerical solutions and those calculated with Ku-

mar and Tuckerman’s model is excellent. That is, the numeri-
cal solution accurately reproduces the boundaries of the
It is clear that our results representing unstable evoluunstable regions predicted by the linear stability analysis of
tions of the free surface are located within the three regionghe full hydrodynamic problem.
predicted by the linear stability theory. Nevertheless, the sta- One of the practical applications of the problem under
bility limits are translated toward values @f>0. The param-  study is the production of sprays. Drops are formed from the
eterskF andg have similar meaning because both depend ortrests of high capillary waves. Therefore, it would be useful
the amplitude of the external vibration. Then, we can con+o investigate the condition under which the amplitude of the
clude that when the viscous effects are considered, a finfeee surface waves increases without bounds. With this pur-
tuning between the frequency of the imposed force and thpose, we have closely examined the numerical solutions lo-
natural frequency of the system is not enough to produceated in region 1 of the stability charts presented in Figs. 3—5
resonance; it is also required thiatbe larger than a critical and we have delimited the subregions labeled 1-I, which are
value. These results are in agreement with the theoreticalpproximately defined by dashed-lines in the maps. For the
analysis reported by Kumar and Tuckerfhamd by Cerda points inside these zones our numerical predictions show—
and Tirapegi for a slightly viscous fluid. just before the computation breaks down—almost chaotic
When points located in region 4 are mapped into thefree surface evolutions and wave amplitudes increasing with-
(p-q) plane, they all lie in region 1 of Fig. 6, confirming the out bounds, suggesting that these points correspond to values
hypothesis that region 4 is a replication of region 1. A carefulof the parameters in which the atomization of the liquid
inspection performed of the corresponding numerical solumight occur. Obviously, these solutions cannot be detected
tions have shown that this is indeed the case. with simpler models based on the assumption of small free
In order to detect the influence of the film thickness onsurface deformations.
the onset of the instability, we have mapped the stable points An interesting feature of the results obtained is that the
located close to the limits of region 1 in Figs. 3, 4 and 5 intolocation of the subregion 1-I depends on the film thickness.
the (p,q) plane using Eqs(13) and (14); the result is de- In fact, for the larger values dfl, considered in this work,
picted in Fig. 7. As it is expected, the extension of the un-this zone is located near the upper bound of regiofseke
stable region is reduced, not only because the threshold Eigs. 3 and 4 while for the thinnest value of the liquid layer
shifted toward larger values of(that is, larger amplitudes of it is located near the lower bound of the subharmonic region
the imposed forcebut also because the lower limit is shifted (see Fig. 5. In the first case, our results agree with the ex-
toward larger values gb, asHg is reduced. periments and the numerical solutions reported by Jiang
With the purpose of validating the numerical solutions,et al*® in a range of very small forcing frequencié3.15—
we have solved the viscous model reported by Kumar an®.34 H2, that is, for a long wave.
Tuckermafi for the same initial liquid depths considered in To detect the origin of the differences induced by the
Figs. 3 to 5. The values @f, obtained for each wave number initial film thickness on the location of subregion 1-1, we
a selected were then mapped into tiped) plane using Eqs. have analyzed some of the solutions that are located near the
(13) and(14), and finally the stability limits for the subhar- boundary of this zone when the initial liquid depth is equal to
monic region corresponding to eaeh, were illustrated in  5x 10 °m (Fig. 3 and 10 °m (Fig. 5. These solutions are
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for a fixed value ofF, and for « varying within the range beleda andb in Figs. 3 and 5, respectively, the time evolu-
delimited by the lower and upper branches of region 1 in thdion of the free surface height at both ends of the computa-
corresponding stability map. We todkequal to 20000 and tional domain, i.e., at the points that initially were the crest
67759, forH,=5x10°m andH,=10 °m, respectively.  and the trough of the wa\&igs. §a) and &b)]. In Figs. 9a)

The examination of the free surface for the thicker liquidand 9b) we present the corresponding results of transform-
layer (Ho=5x10"°m) once a time-periodic solution is de- ing the waveforms into Fourier space using the fast Fourier
veloped for each value af, shows that the amplitude of the transform(FFT).
wave monotonically increases as the wave number is aug- Results illustrated in Fig. 8 show that the amplitude of
mented, almost until the upper branch of the neutral stabilitythe free surface waves increase from the perturbations ini-
curve is reached; in fact, from our numerical solutions nottially imposed up to certain final values in the two cases
presented here, we found that the wave amplitude increasesnsidered. Wheitl,=10"°m a time periodic-state is rap-
from 1.3x10°°m, when a=2.05, to 7.3% 10 °m for idly attained, while fotH,=5%10"°m a repeated pattern is
a=2.86. more difficult to detect. The results of the FFT analysis pre-

When the same analysis is carried out =10 °m sented in Figs. @ and 9b), confirm that in both cases the
andF=67 759, the amplitude of the wave corresponding todominant mode has a frequency equal to (L/2)owever,
the time periodic-state achieved by the system at each séhe spectra for poird is not as well defined as that for point
lected value ofw, first increases and then diminishes as theb. This fact added to the relatively important peak that ap-
dimensionless wave number is augmented, as in the previoymears at a frequency equal to (2f4rontribute to the irregu-
case; nevertheless, according to our numerical solutions, tHar aspect of the evolution of the amplitude of the free sur-
maximum amplitude computed is approximately equal toface observed in the first capgee Fig. &)].
2.65x 10 °m and corresponds t@~0.57 (point labeled in The FFT analysis carried out at pointreveals the pres-
Fig. 5, a value closer to the lower bound of region 1. ence of smaller peaks at frequencies equal to multiplésfof

To illustrate the relevant features of the solutions devel{3/2)f, 2f,...; that is, higher harmonics are also excited and
oped near the onset of region 1-l, fé#, equal to 5 they are responsible for the departure of the waveform from
X10 °m and 10°m, we have depicted for the points la- a sinusoidal curvsee Fig. &)].
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In order to detect the possible mechanisms involved irpeak amplitude and the wavelength; in fact, this quantity is
the breaking of the free surface waves for a larglgy€5 approximately equal to 0.65 fdi,=5X10 °m (point a),
x10°°m) and a very thin l,=10"°>m) liquid layer, we and to 0.24 foH,=10"°>m (point b).
have examined the evolution of the free surface shapes dur- The profiles corresponding to poiaf show that as the
ing a short time intervalabout half cyclg¢ for casesa andb  right side of the domain moves upward a large quantity of
(Fig. 10. The intervals chosen are enclosed by a rectangle iliquid is displaced toward the crest giving rise to a high peak,
Figs. 8a) and 8b), and the times selected are indicated inwhere the radius of curvature of the interface becomes small
the insets of these illustrations where an enlarged view of thand, consequently the capillary forces become large. Consid-
framed regions is shown. The shapes corresponding to poietring that an increase of the amplitude of the external force
a (1-8 are drawn with solid line while those for poifit ~ will produce a higher and more peaked wave, these results
(9—19 are depicted in dashed line. suggest that drops might be formed at the maximum crest

It is easy to see that the more remarkable differencelevation. It is interesting to note that, due to the presence of
between the curves corresponding to these two cases, is thggher order harmonics, the free surface never becomes hori-
steepness of the wave that is the ratio between the peak montal during the time interval.

10 10

(5)

FIG. 10. Predicted free surface shapes for selected
times corresponding to the half cycle enclosed with
dashed lines in Figs.(8 and 8b). The curves drawn in
solid lines(1-8 are forH,=5X10"°m and those de-
picted in dashed line€@—15 are forH,=1x10"°m;

the curves are numbered sequentially for increasing val-
ues of time.

h(t x)(m) x10°
h(t,x) (m) x10°

| ,
fugf g

....... -

0 ' 2 . 4 . 6
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If we now consider the sequence of wave shapes illusin forcing amplitude &¢) since the applied frequency is kept
trated in dashed lines fai,=10"°m, we see that the influ- constant, increases as the depth of the liquid layer decreases;
ence of the bottom boundary on the evolution of the systenthat is, the system becomes more stable if viscous effects are
becomes very important. In fact, in this case, a very thirrelatively larger. Also the minimum value &f associated to
liquid film is formed during the evolutiofthe minimum lig-  the rupture of the free surface increases as the depth of the
uid height at the trough of the wave is smaller than 3liquid layer is reduced.

X 10 ®m in curve 14. As the height of the liquid located at (2) The wave numbek=Kk¢ of the elementary cell de-

the right of the domain increases, a small wave travels toveloped at the onset of the instability increases as the film
ward the left; therefore, the free surface presents a depressi@iickness diminishes.

separating two regions: one where there is a large amount of Next, we discuss both differences in detail.

liquid and the other where a thin liquid film exists; the latter

will resist the leveling of the liquid layer once the highest B, Critical value of a, as a function of H,

liquid elevation is reached at the other end of the domain. In

this case, an increase of the amplitude of the external vibra- In Fig. 11, the value of the critical amplitude) is

tion should produce a larger crest and a thinner film, a Situ!llustrated as a function oH, at the threshold of the first

ation that might favor the film disruption instead of the ejec-SUbharmonic regiofregion 1 in Figs. 3— It is readily seen
tion of drops. from our numerical pred]ctlons that Iarggr amplitudes of the

The large magnitude of the capillary forces compared tqe)ft_erngl fprce are _reqwred to destabilize a system as the
the effective gravity forces, is responsible for the roundednitial liquid height is reduced; also, the effect of the film
crests presented by the waves during the cycle; that is, on tHBickness becomes important flp<5x 10"°m. In fact, if
verge of the numerical break down of our solutions we dothe depth of the liquid layer is reduced below this value, the
not see the flat crests observed—for low excitation frequengXtérnal force will have to be greatly augmented to turn the
cies and when the capillary effects are much lower—bySystem unstable, while it remains almost constant Hgr
Jianget al® larger than 510 °m.

Finally, in the two cases analyzed, the temporal symme- It is of interest to compare our values of critical wave
try is broken, a result that can also be inferred from Figa). 8 amplitude with those calculated with the exact solution of the
and 8b). linear viscous hydrodynamic problem reported by Kumar

Results depicted in Figs. 3, 4, and 5 and those not reand Tuckermafi Therefore, we have also depicted in Fig. 11
ported here for other selected valuesHyf, show that the the minimum amplitude required to destabilize the system as
stability charts are qualitatively similar. Indeed, the same rea function of the initial liquid depth obtained by solving that
gions previously described are detected and, at the onset pfoblem. It is easy to see that the agreement is excellent; in
the instability, the interface is always subharmonically ex-fact, the largest difference observed is below 2.5% and it
cited with a frequency equal to one half the frequency of thecorresponds téd,=10*m.
external vibration; however, the following differences can be = The open squares depicted in the inset of Fig. 11, repre-
observed. sent the minimum forcing amplitudeag=ac,) required to

(1) The minimum value ofF required to produce a produce a solution in region 1-I for four values of the initial
wavy interface, which in our case corresponds to a minimuniquid depth considered in this work. As it is expected,
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diminishes asH, is augmented; however, foH,>5 film thickness is smaller than>10 °m. Thus, for larger
X 10" °m, ac, becomes almost insensitive to changes in filmvalues of the initial liquid depth the critical wave number
thickness, this result confirms that the behavior of the systerremains almost constant, while f, is below 5<107°m,
is no longer affected by the presence of the bottom wall. k¢ rapidly increases as the initial film thickness diminishes.
As we have just mentioned, the onset of subregion 1-Although either in the inviscid or in the viscous case, the
occurs at larger amplitudes of the external force whin  solid wall affects the flow through the normal boundary con-
diminishes; nevertheless, the ratio between the amplituddition deviating the liquid in its vicinity, we see that the wave
values at the onset of subregion 1-1 and at the threshold afumbers of our full model are larger than those predicted by
region 1, i.e.ac,/ac, diminishes as the initial liquid depth Benjamin and Urséllbut, as the results illustrated show, they
decreases. It is easy to verify from the results reported in Figare in very good agreement with those evaluated with the
11, that this ratio is approximately equal to 7 and 3ty  model reported by Kumar and Tuckernfamn fact, these
=10"*m andH,=10"°m, respectively. authors found that in the range of low viscosity, an increase
Goodridgeet al’ in their experimental work on the pre- of this property reduces the value predicted for the critical
diction of the threshold amplitude for drop ejection, reportwavelength if viscous dissipation in the bulk is taken into
that this value depends on the frequency of the external viaccount and viscous dissipation at the solid boundary is not
bration imposed to the system. These authors found that igonsidered. In the present case, we observe that as the initial
the case of water, the critical amplitude for the inception offiim thickness decreases, the differences between the predic-
drop ejection &p) is given byap=2.39(c/w?p)'?, there-  tions of the complete model and those of the linear theory,
fore, for the system analyzed in this wod~3X10"°ma increase; thus, viscous effects reduce the length of the el-
value larger than those reported here for the onset of regioBmentary cell at which the resonance phenomenon is ob-

1-lin the inset of Fig. 11. served. Our numerical solutions show that this reduction is
0.57% whenH, is equal to 5<10"°m and 3.9% when the
C. The critical value of the wave number as a initial depth is 105 m.

function of H,

In F|g 12 the wave numbers of the e|ementary Ce"sD. The evolution of the free surface and the V6|0City
formed at the threshold of region k=K., are plotted as a fields at the onset of the instability ~ (region 1)

function of the initial film thickness, the points there illus- In this section we analyze the influence of the initial

trated represent our numerical solutions while the ContiHUOUﬁquid depth on the flow fields developed near the threshold.
line corresponds to the inviscid solution, thatkg,is evalu-  The two cases studied correspond to valuesigfequal to
ated from 10 *m and 10°m, that are the maximum and minimum

o initial liquid depth considered in this work; the thresholds for

0= \/tanl‘(kao)<L+kmg , (15)  these two cases were obtainedFat 3400, a=4.95, andF
P =26000,a=0.63.

where w,,=145007rs ! andm=1; also, the values ok In Figs. 13a) and 14a) we present the time evolutions
calculated with Kumar and Tuckerman’s model are shown irof the x-points that initially are the trough of the wave for
dashed lines. These results show that the influence of ththese two cases. Insets of these figures depict the interface
bottom wall of the container becomes noticeable when thdocation of the liquid layer ak=0 over approximately half
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FIG. 13. (@) Temporal evolution of the film thickness at=0 near the threshold of the first subharmonic regionHge=10"*m. (b) Streamlines corre-
sponding to the selected times illustrated in the insdiapfthe figures are ordered alphabetically for increasing values of time.

cycle and the dots shown correspond to selected times atave amplitude at the free surface increases from the ini-
which the streamlines have been evaluated. The results atially imposed perturbation until the constant value corre-
portrayed in Figs. 1®) and 14b) for Hy equal to 10*m  sponding to the time periodic solution is achieved. A simple
and 10 °m, respectively. analysis based on the fast Fourier transform confirms that the
It is easy to noticdsee Figs. 1@) and 14a)] that the period of the free surface oscillation is twice the period
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FIG. 14. (a) Temporal evolution of the film thickness at=0 near the threshold of the first subharmonic regionHge=10"°m. (b) Streamlines corre-
sponding to the selected times illustrated in the insdiapfthe figures are ordered alphabetically for increasing values of time.

of the external vibration; that is, the principal mode excitedvalues ofH, considered in this work. This result contrasts
is subharmonic in agreement with experimental resisé®,  with the result reported by Murakami and Chikahim their

for instance, Hasegawet al®). Also, the shape of the wave numerical study of this problem for a more viscous fluid
is almost sinusoidal at the onset of the instability for all the(0.0072 Pasand at a much lower frequency of the external
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vibration (41 Hz, who found that the critical waveform is V. CONCLUDING REMARKS

not sinusoidal. The analysis of the wave computed by these

authors using the FFT, shows the presence of (d2w,3/ The time evolution of thin liquid films subject to a peri-
2w,5/2w,...) and even components,2w,3w,...) being the co-  odic vertical oscillation, has been numerically analyzed by

efficients of the first two odd frequencies—which are thesolving the Navier—Stokes equations for an incompressible
largest—of the same order. liquid. The results portrayed pertain to a slightly viscous

The streamlines illustrated in Fig. @8 for H, fluid; in fact, the values employed for the physicochemical

=10"*m correspond to the instants of time identified with Properties of the liquid were those of water. From our nu-
dots in the inset of Fig. 18). The amplitude of the external merical results we built charts delimiting instability regions
force required to produce this motion is equal to 1.0036n the F-a plane. These regions nicely fit into the instability
X 10 ®m, and as we have already mentioned the imposed©nes determined almost 50 years ago by Benjamin and
force is approximately equal to the minimum needed to deVJrsell for an ideal fluid; nonetheless, our results occupy
velop free surface waves with a frequency equabt?; also these zones.only _partlally, mgkmg evident the stabilizing in-
the aspect ratio =kH,/) of the elementary cell formed fluénce of viscosity as previously reported by Kumar and
is nearly 1.57, a value almost equal to the inviscid flow case] Uckeérman and Cerda and Tirapegui. Moreover, the stability
The sequence of streamlines presented in the ﬁguréllmlts numerically determined are in excellent agreement

show the existence of two swirls, one near the bottom of thdVith the limits of the linear stability analysis presented by

container and the other at the free surface, both recirculatioréumar and Tucke_rman. . o
are present during a very short period of time. The swirl We have studied the effect of the thickness of the liquid

located on the solid wall is formed when the liquid is moving Il on Faraday's phenomenon. The results just presented
from right to left and the cell height is almost maximum at confirm previous findings obtained by linear stability analy-

the left side. Under these conditions, the pressure on thﬁiS; among them that stronger exciting forces are needed to
plate atx=0 is larger than the pressuresat 1: therefore produce unstable waves as the thickness of the film is re-
the liquid located over the solid wall begins ’to move fr,om duced. Also, for the cases studied, that the lower boundary of

left to right and a recirculating flow is developed. The size OfwsrclijT\Siti?alfv;z?/grr:irI:bteHré\-/ZluCharéstiippgars to move to-
this recirculation grows in time but is limited by the appear- 9 . € 9. % . .
; To detect the amplitudes of the external vibration at
ance of another swirl at the free surface, where the stronger, . . .
) . . which the breaking of the surface waves might take place,
motion takes place. After a very short period of time, all the . . o . .

. . we have delimited a region of the stability maps in which the
fluid moves together, but only in the zone located near the . : .
free surface the modulus of the velocity is important. That iswavy motion of the free surface appears to_ increase W'thOUt
the boundarv laver that exists alond th lid w ”' i v r’oounds. Although a more complete numerical analysis con-
th'e ounda yd aYteH—I a (?ds N aotgﬁ et ;? d at1s efycerning the evolution of the free surface is required, our nu-

In compared witiHo ahd does not afiect Iné dynamics ot ., qical solutions show evidences that when the initial liquid

the system. depth is very small, the instability process that produces the

.Figure 14b) iIIus_trates, near the instability.threshold of free surface disruption might be different from the drop ejec-
region 1, the evolution of the flow pattern during half cycle ;0 chanism.

of a system with an initial liquid depth equal to 10m. The
amplitude of the external force required to produce this MO film thickness of about 810 5m delimits two zones of

. . 76 -
tion is equal to 7.67410 "m and the.aspect' ratio of the ¢jeqr different behavior; that s, if the film thickness is larger
elementary cell developed i8=0.200; that is, & valueé han this value the force needed to turn the surface unstable
slightly larger than the one corresponding to the ideal casgs qimost constant, and so is the length of the unstable wave
(0.192. . _ ~ appearing at the instability threshold. On the other hand, if
The sequence of streamlines depicted in this figurgne fiim is thinner than %105 m, the applied force at the
shows that in this case there is only one swirl; in fact, theinstapility threshold increases almost exponentially as the
recirculation formed near the solid wall increases in size disthickness of the film is reduced; accordingly, the length of
placing the liquid above it, and finally involves the whole the wave appearing at the onset of the instability is rapidly
cell. That is, the effects of the viscous boundary layer thateduced. Since we suspected that the reasons behind this
exists near the plate affect the motion of all the fluid, a situ-change of behavior dwelled on viscous effects originated at
ation completely different to that illustrated in Fig.(bBfor  the solid wall, we studied in detail the time evolution of the
Ho=10"*m. flow fields for two systems with initial film thickness of

Although the analysis of the velocity fields associated t010~4m and 10 °m, respectively; i.e. well above and below
Faraday waves here presented is limited to two cases only, fhe limit value just mentioned.

shows that the streamlines developed for a slightly viscous  When the film thickness is largédo=10"%m) the evo-
fluid strongly depends on the viscous effects associated tlution of the streamlines within a period of oscillation evi-
the bottom wall. The vorticity generated at the solid bound-dences that the vorticity generated at the wall is weak and
ary has almost negligible effects on the flow pattern when theloes not interact with the surface motion. In fact, the flow
liquid depth is large Ho=10 *m); however, it affects a motion reverses by developing—at the interface—a thin
larger region a$l diminishes, and it might even involve the boundary layer that rapidly grows and occupies the whole
whole cell. cell. Thus, as long as the flow in the vicinities of the solid

We have also confirmed, for the case under analysis, that
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