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GRAPHICAL ABSTRACT 
In this work two 2D pgf inversion methods are developed, for which the pgf is regarded 
as a complex variable. These methods provide an outstanding accuracy in the inversion, thus 
allowing extending the 2D pgf technique for modeling bivariate distributions without 
restrictions in the range of values of its independent domains 

 
 
HIGHLIGHTS 

 Advanced modeling of polymer processes. 

 Prediction of bivariate (2D) distributions of polymer molecular properties. 

 Improvement of the pgf modeling method. 

 Development of new pgf inversion methods that use complex and/or real pgf. 

 Accurate modeling of 2D distributions with domains of different orders of magnitude. 

 
Abstract 
 
The 2D probability-generating function technique is a powerful method for modeling bivariate 

distributions of polymer properties. It is based on the transformation of bivariate population 

balance equations using 2D probability generating functions (pgf) followed by a recovery of 

the distributions from the transform domain by numerical inversion. A key step of this method 

is the inversion of the pgf transforms. Available numerical inversion methods yield excellent 

results for pgf transforms of distributions with independent dimensions with similar orders of 

magnitude, for example bivariate molecular weight distributions in copolymerization systems. 

However, numerical problems are found for 2D distributions in which the independent 

dimensions have very different ranges of values, such as the molecular weight distribution-

branching distribution in branched polymers. In this work, two new 2D pgf inversion methods 

are developed, which regard the pgf as a complex variable. The superior accuracy of these 

innovative methods makes them suitable for recovering any type of bivariate distribution. This 



    

enhances the capabilities of the 2D pgf modeling technique for simulation and optimization of 

polymer processes. An application example of the technique in a polymeric system of industrial 

interest is presented. 

 

Keywords: modeling, polymerization, bivariate distribution, 2D probability generating 

function 

 

 

1. Introduction 

The microstructure of a polymer chain, which includes molecular weight distribution (MWD), 

copolymer composition distribution (CCD), long-chain branching distribution (LCBD), short-

chain branching distribution (SCBD), sequence length distribution (SLD) etc., has a strong 

influence on the processing and end-use properties of the material (e.g., rheological, physical, 

chemical, mechanical, etc.). In many cases, a proper characterization of a polymer sample 

requires simultaneous information on the distributions of several properties. For example, joint 

information about both the molecular weight and chain composition distributions (MWD-CCD) 

is important for copolymer systems, while branched polymers require knowledge of their 

branching density and the molecular weight distribution (MWD-SCBD and/or MWD-LCBD). 

Operating the polymer processes with a focus on achieving tight control of the molecular 

architecture of the polymer chains is very important for polymer manufacturers. To this 

purpose, a thorough understanding of the complex relationships between the polymer synthesis 

conditions and the resulting molecular properties of the resin is very useful. Therefore, 

considerable effort has been devoted to developing detailed predictive models of polymer 

processes. The calculation of the distribution of a single property, in most cases the MWD, has 

been extensively studied. However, the treatment of more than one independent coordinate 

leads to highly complex problems for which very few solution approaches have been developed 



    

One such approach is based on the solution of multivariate population balance equations (PBE). 

PBEs are drawn from a kinetic mechanism of the process, and they describe the evolution of 

the concentration of the different polymer species. However, the total number of equations 

commonly runs into the thousands. Consequently, the computational effort associated with the 

solution of the complete set of nonlinear balances is prohibitively high for most cases of interest. 

To deal with this high-dimensional problem, several numerical methods have been proposed in 

the literature.  

One of these methods is the numerical fractionation technique. It was used for predicting the 

bivariate MWD-LBCD (Chen et al., 2015; Pladis & Kiparissides, 1998), the bivariate MWD-

number of active sites distribution (Lazzari & Storti, 2014) and the single MWD of branched 

polymers (Kizilel et al., 2007; Papavasiliou & Teymour, 2003). It consists of dividing the total 

population of polymer chains into classes according to the number of branching points. 

Reconstruction of the MWD at high monomer conversions and high branching content may 

demand a high computational load because the number of classes required to reduce 

approximation errors is large.  

In sectional methods (Singh et al., 2013), the distribution function is represented through 

population on a finite number of discrete pivots. One variant of this method, known as the Fixed 

Pivot Technique, keeps the pivots fixed in space and allows the evolution of the population on 

each pivot with time. This method has been applied to predict the MWD-CCD in copolymer 

systems (Krallis et al., 2008) and the MWD-LCBD in branched polymer systems (Butté et al., 

2002; Meimaroglou et al., 2007). Although this method yields accurate results, it requires 

special computational skills to overcome its numerical complexity. 

Additionally, Iedema et al. (2000) developed a calculus method based on the so-called 

distributed moments, in which the chain length distribution is calculated rigorously and the 

additional properties are computed as averages with respect to chain length. Iedema et al. (2013) 

also developed a method applicable to two-dimensional population problems based on 



    

approximations of distributions in terms of Gaussian basis functions. This method is appropriate 

for problems where the evaluation of convolutions in both dimensions is crucial. 

Recently, Zapata-González et al. (2011) solved the original system of PBEs, stating that this is 

possible only under certain circumstances. Although this technique involves dealing with a 

large system of equations, it is simple and straightforward to apply. This approach was used to 

predict the bivariate MWD of an intermediate moiety in RAFT polymerizations. The quasi-

steady state approximation was used to remove the stiffness of the system of equations. 

Another approach to modeling multivariate distributions is based on probabilistic methods. 

These are mainly represented by the Monte Carlo technique. This tool is relatively simple to 

apply and fits conveniently the discrete and stochastic nature of high-dimensional 

polymerization processes. It can also provide extremely detailed information about the polymer 

microstructure and the topological architecture of the chain that is not available with 

deterministic solvers. For example, Monte Carlo models have been used to predict the MWD-

CCD in different copolymerization systems (Krallis et al., 2008; Ali Parsa et al., 2014), the 

MWD-LCBD in branched polymers (Costeux, 2003; Meimaroglou et al., 2007) and the MWD-

LCBD-CCD of some polyolefins (Hamielec, 1997). A significant disadvantage of this 

technique is the high computational cost required to obtain accurate results, even with modern, 

parallelized systems (Wulkow, 2008).  

Shütte and Wulkow (2010) presented a hybrid deterministic-stochastic method that combines 

some of the advantages of both approaches. This hybrid method is based on computing the basic 

chain length distribution deterministically and adding further properties using a stochastic 

method based on relatively small ensembles of chains. They applied this method to predict the 

bivariate MWD-CCD and trivariate MWD-CCD-LCBD in copolymerization systems. 

In previous works (Asteasuain & Brandolin, 2010; Brandolin & Asteasuain, 2013) we presented 

a deterministic method for modeling bivariate distributions of polymer properties. It is based 

on the transformation of PBEs using 2D probability generating functions (pgf) followed by a 



    

recovery of the distribution from the transform domain by numerical inversion. By means of a 

2D pgf Transform Table, an easy transformation of any typical polymer balance equation can 

be achieved. This modeling technique can be used without resorting to any simplifying 

assumptions or a priori knowledge of the distribution shape. Besides, the pgf Transform Table 

allows an easy model formulation. The resulting model is usually composed by a DAE system 

of equations of a reasonable size that can be solved efficiently with standard computational 

resources. 

A key step of this method is the inversion of the pgf transforms. Two inversion methods were 

developed (Asteasuain & Brandolin, 2010), which yielded excellent results for modeling the 

bivariate MWD in different copolymerization systems (Fortunatti et al., 2014; Gianoglio 

Pantano et al., 2011; Gianoglio Pantano et al., 2012). This joint distribution is characterized by 

two independent dimensions of similar orders of magnitude.  

However, numerical problems were found when the pgf technique was applied to 2D 

distributions in which the independent dimensions had very different ranges of values. For 

example, in the MWD-SCBD or MWD-LCBD the molecular weight dimension typically varies 

between 1 and 105 or more, while the branching density normally ranges between 1 and 100. In 

some copolymer systems the MWD-CCD may also fall into this category, when the 

concentration of one of the comonomers in the polymer chains is very low (Abiko et al., 2015).  

In the present work, two new 2D pgf inversion methods are developed, which regard the pgf as 

a complex variable. These methods overcome the limitation presented by those described in our 

previous work (Asteasuain & Brandolin, 2010). The superior accuracy of these inversion 

methods makes them appropriate for recovering any type of bivariate distribution, which 

enhances the capabilities of the 2D pgf modeling technique. Thus this methodology becomes a 

powerful tool in the operation of polymer processes to aid the synthesis of polymers with pre-

specified molecular architecture. An application example of the pgf method in a polymeric 

system of industrial interest is presented. 



    

 

2. pgf inversion method 

Modeling a bivariate distribution of polymer molecular properties involves calculating the 

concentration of the polymer chains [Pn,m] for every possible value n and m of the two 

distributed properties. The pgf modeling technique is based on transforming the infinite set of 

mass balances of the polymer species [Pn,m] to the pgf domain. Thus a finite set of balance 

equations for the pgf transform of the distribution is obtained. The pgf equations are solved and 

the original distribution is recovered by numerical inversion. 

The 2D pgf transform is defined for a discrete bivariate probability distribution as follows: 

   
1 2 1 2, ,

0 0

1, 2 1 2 ,n m
a a a a

n m

z z z z p n m
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  (1) 

In this expression, the random variables n and m are the distributed properties, and z1 and z2 

are the dummy variables of the pgf corresponding to the transformation on the variables 

identified by n and m, respectively. The pgf order (a1,a2) is used to indicate different types of 

probabilities. The probability distribution  
1 2, ,a ap n m  is related to the concentration of the 

chemical species by the following expression: 

 
1 2

1 2

1 2

,

,

,
0 0

,
a a

n m

a a
a a

r s
r s

n m P
p n m

r s P
 

 

  
  

 (2) 

The probability distribution has physical meaning for some combinations of (a1,a2). For 

example, in the case of a1 =0, a2 = 0 it is equivalent to the distribution of species P expressed 

as number fraction. 

Replacing Eq. (2) into Eq. (1), the following expression for the pgf definition is obtained: 
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where 1 2

1 2, ,
0 0

a a
a a r s

r s

r s P
 

 

     is the double moment of order (a1,a2) of the bivariate 

distribution of species P. 

Once the pgf values are available, the original distribution function  
1 2, ,a ap n m  can be 

recovered from its 2D pgf transform  
1 2, ( 1, 2)a a z z  by means of the double inversion: 

    
1 2 1 2 1 2

2
, , ,, 1, 2a a a a a ap n m z z   (4) 

Several methods have been proposed in the literature for the inversion of multivariate Laplace 

transforms (Abate et al., 1998; Brancik, 2002; Brančík, 2010; Chao et al., 2008; Singhal et al., 

1975; Valkó & Abate, 2005; Xiao & Lee, 2006). In particular, Valkó & Abate (2005) used a 

two-step procedure in which the inversion is carried out stepwise in each independent 

dimension at a time, using univariate inversion methods in each of them. In this work, as in our 

previous reports, we applied this concept for the inversion of 2D pgf transforms, as explained 

below. 

A two-step procedure is used in the development of the 2D inversion formulas. In the first step, 

z1 is regarded as a constant and the inversion is performed with respect to z2 only: 

     
1 2 1 2

1
, 2 ,1, 1, 2a a z a az m z z    (5) 

In the second step,   
1 2, 1,a a z m   is inverted with respect to z1 obtaining  

1 2, ,a ap n m : 

     1 21 2

1
,, 1, 1,a aa a zp n m z m  (6) 

Since inversion of univariate pgfs is performed in each of these steps, it is possible to use 

inversion algorithms developed for this type of pgf. Our previous 2D pgf inversion methods 

used inversion algorithms of real pgfs in each inversion step. However, the methods presented 

in this work use (in at least one of the inversion steps) a univariate pgf inversion method that 

regards the pgf as a complex function. 



    

2.1 Inversion method of complex univariate pgfs 

Different methods have been developed for the numerical inversion of complex univariate pgfs. 

Abate and Whitt (1992) and Abate et al. (2000) presented a Fourier-series method for the 

numerical inversion of pgfs. This method involves a discretization approach that requires a high 

number of pgf evaluations, which is not convenient for the inversion of pgf transforms of the 

MWD. The methods proposed by Cavers (1978) and Daigle (1989) use a different discretization 

approach, reducing the number of pgf evaluations. None of these authors applied their methods 

to the inversion of pgf in polymer systems. Mills (1986) developed a numerical inversion 

method of z-transforms with a similar approach to that of Cavers and Daigle to calculate 

polymer chain length distributions. It should be noted that the z-transform is a transform 

function that becomes equivalent to the pgf by an appropriate change of its dummy variable. 

Asteasuain (2003) developed a method for the numerical inversion of univariate pgfs similar to 

those mentioned above. In a similar way to Eq. (1), a univariate pgf was defined as 

   
0

n

n

z z p n




   (7) 

Substituting z in Equation (7) for the expression 

   cos siniz e i     , (8) 

that is, with z lying on the unit circle in the complex z-plane, gives 

         
0 0

cos sini

n n
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     (9) 

Equation (9) allows identifying the real part (fr()) and the imaginary part (fi()) of ( )z : 
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Since fr() and fi() are even and odd functions of , respectively, they have expansions in 

cosine and sine Fourier series: 

     
0

cosr
n

f n a n 




  (12) 

     
0
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n
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



  (13) 

where a(n) and b(n) are the coefficients of the cosine and sine expansions, respectively. 

Comparing Eq. (10) with Eq. (12), and Eq. (11) with Eq. (13), it can be observed that the 

distribution p(n) is equal to the coefficients of the cosine expansion of fr() and of the sine 

expansion of fi(). Hence, it is possible to use the formulas for the coefficients of the Fourier 

series in order to obtain p(n) from fr() or from fi(): 
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Combining both integrals of Eq. (14), an alternative formula for p(n) can be obtained: 
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These integrals can be approximated using the trapezoidal rule. This rule has been used by 

several authors for solving similar integrals, and has been proven to yield a smaller 

discretization error than other methods, such as Simpson’s rule (Abate et al., 1998; Cavers, 

1978; Daigle, 1989). 

Approximating the integral of Eq. (15) with the trapezoidal method using 2 N    gives the 

following inversion formula: 
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where  p n  is the approximation of the true distribution  p n . 

Other similar expressions can be obtained for the integrals in Eq. (14). However, the expression 

in Eq. (16) has a smaller truncation error due to cancellation of some of the error terms that are 

present in the alternative formulas (Asteasuain, 2003). Relevant properties of the inversion 

formula of Eq. (16) are described below. Firstly, the inversion formula is valid for n ≤ N-1, 

since it yields: 

    , 1,2,p kN n p n k     (17) 

This means that the formula is periodic with period N. Therefore, values calculated for n ≥ N 

bear no relation to the true values of the distribution. 

Another important feature is the number of pgf evaluations required. According to Eq. (16), 

this value is equal to N. However, due to symmetry properties of the pgf with respect to 

(Asteasuain, 2003): 
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, (18) 

the number of function evaluations is reduced to N/2. Therefore, parameter N both limits the 

range of applicability of the inversion formula and determines the number of function 

evaluations. Although small values of N would reduce the number of pgf evaluations, there is 

a constraint due to the relationship between N and the inversion error. It can be demonstrated 

that the error of the method is (Asteasuain, 2003): 

       
1k

e n p n p n p kN n




     (19) 



    

This means that the distribution recovered for 1n N   consists of the actual distribution points 

in this interval plus the sum of the curve segments in the intervals 2 1kN n kN   , k = 1,…,∞. 

For example, for N = 100, the recovered distribution  p n
 
for 1 99n   is equal to the actual 

distribution  p n  in that interval (desired result), plus the actual distribution in the interval 

100 199n  , plus the actual distribution in the interval 200 299n  , etc. (i.e.    5 5p p

=  105p +  205p +…  5 ·100p k ). This error cannot be evaluated without knowledge of the 

true distribution. However, it can be observed that the inversion error becomes negligible by 

setting N to a value larger than the maximum significant value of the independent distributed 

variable, i.e. by setting N such that   0p n   for n ≥ N. From the point of view of a user of the 

method, the latter is a key property. It means that the whole bell of the distribution should be 

included in the interval [0,N] for the error to be insignificant, otherwise the computed 

distribution is likely to be inaccurate. Another important property is that the inversion formula 

of Eq. (16) is not valid for n values beyond N, as shown by Eq. (17). 

 

2.2 Inversion methods of 2D pgfs 

Two inversion methods of 2D pgfs will now be presented. The first one uses the univariate pgf 

inversion method described above (called IFG method from now on) for both steps of the 2D 

pgf inversion (see Eq. (5) and (6)). The second method uses IFG in the first step and an inversion 

method of the real univariate pgfs in the second step. 

2.2.1 2D IFG method 

In this method the inversion formula given in Eq. (16) is used in the two inversion steps. 

Applying it in the first step described in Eq. (5) yields 
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When the IFG formula is applied in the second inversion step given by Eq. (6), the following 

expression is obtained: 
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Substituting Eq. (20) into Eq. (21) with 
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 (22) 

In this equation,  1 2,rf    and  1 2,if    are the real and imaginary parts, respectively, of 

 1 2

1 2, ,i i
a a e e  . In order to achieve good accuracy, the constraint on the value of parameter N 

described in the previous section has to be extended to each dimension involved in the inversion 

formula of the 2D IFG method (Eq. (22)). This implies that parameters N1 and N2 have to be 

larger than the maximum significant values in the dimensions of n and m, respectively. In 

addition, the required total number of pgf evaluations nev is in principle 1 2evn N N . However, 

for the bivariate pgf the following symmetry relationships can be obtained: 

   1 1 2 2 1 2
1 2 1 2

2 2 2 2
, ,r rf N j N j f j j

N N N N

      
     

   
 (23) 
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   
 (24) 



    

These symmetry properties allow reducing the pgf evaluations to 

  1 1 2 1
1 2 21 1 1

2 2 2ev

N N N N
n N N N

         
 

.a This number may become considerably 

large if at least one of the distributed properties is the molecular weight, whose significant range 

may easily reach values of order 105 or more. It should be noted that the number of function 

evaluations does not depend on the points (n,m) for which the distribution p(n,m) is to be 

recovered, but only on parameters N1 and N2. 

An expression for the inversion error of this method can be obtained by applying twice the error 

of the univariate IFG shown in Eq. (19), once to each of the two independent dimensions. The 

resulting error expression for the 2D IFG method is 

         
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 (25) 

As discussed for the univariate IFG, the inversion error is made negligible by selecting N1 and 

N2 values large enough so that    2 1, , , 0p n N p N m    n,m. Note that, since the distribution

 , 0p n m  , the inversion error is always nonnegative. 

2.2.2 2D PAP-IFG method 

This method applies the IFG formula in one of the inversion steps, and an inversion method for 

real pgfs in the second one. The latter is an adaptation of the Papoulis inversion method of 

Laplace transforms to pgf (PAP method from now on) that we developed and applied in our 

                                                 

a The 2D IFG method requires pfg values at a number of (z1,z2) points with 
1

1

2

1
ij

Nz e


  and 
2

2

2

2
ij

Nz e


 , where 
j1 = 0,…,N1-1 and j2 = 0,…,N2-1. This expression for nev results from considering that the pgf is calculated for j2 = 
0,…,N2-1 and j1 = 0,…,N1/2, and that the remaining points are obtained by applying the symmetry properties. 
Alternatively, the pgf may be calculated for j1 = 0,…,N1-1 and j2 = 0,…,N2/2 with the remaining pgf values being 

obtained by symmetry. In this case the number of pgf evaluations would be 1 2 2
1 1

2 2ev

N N N
n N    . These 

two possibilities for nev differ in the second and third terms, which are considerably smaller than the first one. 
According to the relative values of N1 and N2, any of the two options may be chosen by the user in order to reduce 
(slightly) the number of pgf evaluations. 



    

previous 2D pgf inversion methods (Asteasuain & Brandolin, 2010). The modified Papoulis 

inversion formula is 

      
p

11
1 0

.
N

T

jj
j

p n n b n v


  b v  (26) 

where v is a vector defined by 

 1
2. (1/ 2)

T

N
v A L  (27) 

In this expression, A is the lower triangular matrix whose elements Ai,j are 

 
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The expressions in the numerator and denominator of this equations,  1
j

i j   and 

  1
1 / 2

j
i


 , are calculated as follows: Let f be the expression between parentheses and h the 

subscript, then  hf  is 
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1 0

1 1 0h

h
f

f f f h h
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 (29) 

The variable L2N in Eq. (27) is a vector whose elements L2N,j, j = 0,…,NP are Legendre 

polynomials of order 2j evaluated at x = 1/2. Legendre polynomials are calculated as follows: 
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Pgf transforms are found in vector b(n), which is defined by 
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 (31) 

Including the PAP formula into Eq. (6), which corresponds to the second inversion step, yields 

the following expression: 
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As with the 2D IFG method,   
1 2, 1,a a z m , 

   12 1 ln 2
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j

nz e



  (real) is computed using the IFG 

formula for the first inversion step (Eq. (20)). Thus the inversion formula of the 2D PAP-IFG 

method is obtained: 
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 (33) 

In the case of the 2D IFG method, 
1 2,a a is a complex function whose independent variables (z1 

and z2) are both complex. In the 2D PAP-IFG method, 
1 2,a a is a complex function with z1 real 

and z2 complex. In Eq. (33),  21,rf z   and  21,if z   are the real and imaginary parts of

 2

1 2, 1, i
a a z e  , respectively. The 2D PAP-IFG method has two parameters: NP and N2. As for 

the 2D IFG method, these parameters influence the inversion error and the number of pgf 

evaluations. 

Unlike the 2D IFG method, it is not possible to develop an expression for the inversion error 

for the 2D PAP-IFG method, because no error formula is available for the univariate Papoulis 

method. However, some guidelines can be indicated. Firstly, parameter N2 needs to be larger 

than the maximum significant value in the dimension of m in order to make the error of the 

inversion in this dimension negligible, as discussed above. As for parameter NP, it represents 

the number of terms in a polynomial expansion in the dimension of n of the original distribution. 



    

Large values reduce the truncation error, but increase the round-off error at the same time. 

Therefore, there is an optimum value that minimizes the total error, and this value can be found 

by convergence of the distributions recovered with successive values of this parameter. Usually, 

optimum values are about NP = 10-20. More details can be found elsewhere (Asteasuain & 

Brandolin, 2010). 

Parameters Np and N2 also determine the number of pgf evaluations. As observed in Eq. (33), 

 
1 2, 1, 2a a z z

 
is evaluated at a set of values (z1i,z2j) for which z2j, j = 0,…, N2 depends only on 

parameter N2; alternatively, z1i, i = 0,…, NP depends on both NP (which determines the number 

of z1 values) and on the value of n for which the distribution p(n,m) is to be required. The total 

number of pgf evaluations required by the PAP-IFG method is   21 1
2ev n P

N
n N N

    
 

, 

where Nn is the number of values of n for which the distribution will be computed. The number 

of pgf evaluations nev takes into account the symmetry properties of the complex pgf: 
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Since the optimal value of parameter NP is not related at all with the range of values of the 

variable n, it is convenient to assign this domain to the distributed property with the largest 

order of magnitude. The number of calculated points in the domain of n (Nn) is a user-defined 

parameter that only determines the desired level of detail in the predicted distribution. 

Both inversion methods (2D IFG and 2D PAP-IFG) will be first tested against the inversion of 

2D pgf of bivariate distributions with known pgf transforms. Then an example of an actual 

polymeric system in which the polymer is characterized by a bivariate distribution with domains 

of different orders of magnitude will be presented. In this example, the 2D pgf technique is used 



    

to predict the bivariate MWD-BD for a polyethylene produced by a mixed metallocene catalyst 

system. 

 

3. Results and Discussion 

3.1 Performance of the 2D pgf inversion methods. Recovery of distributions with known 

pgf transforms 

Bivariate distributions for which the analytical expression of their pgf transforms is known were 

initially used to test the inversion methods. Distributions with known pgf transforms were 

selected so as to avoid any contribution of the pgf value to the error in the recovered distribution 

(i.e. a pgf obtained by numerical solution of balance equations may be corrupted by numerical 

noise). The following analytical distributions were used: 

 
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n e

p n m n q q
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 
   (37) 

These distributions were selected because their shape resembles that of distributions that can 

be found in polymer systems, and their pgf transforms are known. These pgf transforms are: 

     1 21 1 2 11 1, 2 z zz z e       (38) 
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 (39) 

The values of the parameters of distributions  1 ,p n m  and  2 ,p n m  were set at 1 =100, 

2 = 5, and q =0.999,  = 5, respectively. These values were chosen so that the distributions 

would result in independent variables with very different ranges of values. Figures 1 and 2 

show the results obtained for the 2D IFG method. It can be observed that an outstanding 

accuracy was obtained. The pgf inversion was carried out with N1 = 140, N2 = 16 for  1 ,p n m , 



    

and N1 = 8000, N2 = 20 for  2 ,p n m . The number of pgf evaluations was 1120 in the first case 

and 80 000 in the second case. 

 
As mentioned in section 2.2.1, parameters N1 and N2 should be set to values large enough so 

that    2 1, , , 0p n N p N m    n,m in order to ensure a negligible inversion error. It can be 

inferred from the graphs in Figs. 1 and 2 that the set of (N1,N2) values chosen for each 

distribution fulfils this requirement. As a result, the inversion error in both cases is insignificant. 

It should be noted that the values of N1 and N2 are conservative regarding the error requirement. 

Lower values could also have been used with small inversion error. Parameters N1 and N2 

cannot be set if the approximate range of the distribution is not known in advance, but a few 

preliminary simulations are sufficient to determine the required information. The user would 

benefit from understanding in detail how the parameter values influence the inversion error. For 

this reason, an example of the sensitivity of the error of the inversion method with respect to 

the values of N1 and N2 is included in the Appendix section. 

The two bivariate distributions recovered with the 2D PAP-IFG method are shown in Figs. 3 

and 4. 

A very good level of accuracy in the inversion was also obtained in this case. The parameters 

were NP = 30, N2 = 16 in the case of  1 ,p n m , and NP = 12, N2 = 20 for  2 ,p n m .  

As discussed above, the influence of parameter N2 on the inversion error is very similar in both 

methods (2D IFG and 2D PAP-IFG). Therefore, the error in the inversion in the dimension of 

m is made negligible by selecting a sufficiently large value of N2.  

An appropriate value of parameter Np results from a trade-off between truncation and round-off 

errors. This value can be obtained by seeking for the convergence of the recovered distributions 

when increasing Np. An example of this procedure is shown in the Appendix. As discussed in 

the Appendix, the Papoulis method cannot guarantee accuracy in the inversion (in the 

dimension of n in this case). However, experience shows that a good convergence of the 



    

distributions when finding the value of Np is correlated with good accuracy in the inversion, as 

was the case in these examples.  

The number of points in the n domain for the first and second distributions were 31 and 21 

points, respectively. For these conditions, the number of pgf evaluations in each case was 8649 

and 2730. Therefore, the 2D IFG method is more appropriate for the first distribution, but the 

2D PAP-IFG method is better for the second one. In fact, only 2 seconds are needed in a 

standard desktop computer to compute  2 ,p n m  with the 2D PAP-IFG method, whereas 

almost 30 minutes are necessary with the 2D IFG method. This means that, from the point of 

view of computational effort, balance shifts from 2D IFG to 2D PAP-IFG as the size of the n 

domain grows. 

 

3.2 Modeling of bivariate distributions in polymer systems 

This section illustrates the use of the pgf technique for modeling bivariate distributions with 

domains of different orders of magnitude in polymer systems. The case study involves the 

prediction of the MWD-LCBD of a polyethylene produced by a mixed metallocene catalyst 

system in a continuous stirred-tank reactor (CSTR) and a semibatch reactor. This type of 

branched polyethylene synthesized by metallocene catalysts, known as mLLDPE, is 

industrially produced by Dow and other chemical companies. This polymer, which contains 

LCB in its chain structure, competes with LDPE in some applications. Recently, Dow 

introduced a new metallocene polymerization process that allows greater flexibility in tailoring 

molecular weight distribution, SCBD and LCBD specific to an application’s requirements. It 

gives the manufacturer greater freedom in designing resins and meeting ongoing demands of 

polyethylene films. This development led to the mLLDPE ELITETM series of polyethylenes 

(Dow Polyethylene, 2011). 



    

In general, the rheological behavior of branched polymers differs from that of their linear 

counterparts. The flow properties of branched chains depend strongly on the molecular 

architecture, in particular on the type and number of long-chain branches. For this reason, a 

deep understanding of the relationship between the rheological properties of the material and 

the synthesis conditions is an essential issue for developers. One of the key components of this 

relationship is the connection between the synthesis conditions and the bivariate MWD-LCBD 

of the polymer. The latter is an input to advanced rheological models that can predict the melt 

flow properties of the resin (Pladis et al., 2015). 

The process under consideration is specifically the polymerization of ethylene under the mixed 

metallocene catalyst system Et[Ind]2ZrCl2/CGC-Ti. Catalyst type 1 (constrained geometry 

catalyst, CGC-Ti) is capable of polymerizing both monomers and macromonomers 

(incorporating long-chain branches), whereas catalyst type 2 (linear catalyst, Et[Ind]2ZrCl2) can 

only polymerize monomers (unable to incorporate macromonomers). A generally accepted 

kinetic mechanism (Iedema & Hoefsloot, 2003) is presented in Table 1.  

In these kinetic equations, b
,n iR  is a growing polymer radical on a CGC-Ti catalyst with chain 

length n and i branches, lin
,1nR  is a linear growing polymer radical on an Et[Ind]2ZrCl2 catalyst 

with chain length n, b=
,n iP  and b

,n iP  are dead polymer chains with chain length n and i branches 

from a CGC-Ti catalyst, with and without a terminal double bond, respectively, and lin=
,1nP  and 

lin
,1nP  are linear dead polymer chains with chain length n from an Et[Ind]2ZrCl2catalyst, with and 

without a terminal double bond, respectively. It is worth mentioning that the total concentration 

of dead polymer chains with a terminal double bond is = b= lin=
, , ,n i n i n iP P P  .The main polymer 

chain is taken as a branch, for example b
,1nP  is a linear dead polymer chain from a CGC-Ti 

catalyst. The values assigned to the kinetic constants (Iedema & Hoefsloot, 2003) are shown in 

Table 2.  



    

Notice that branched molecules are formed by the terminal double bond propagation on a CGC-

Ti catalyst, in which macromonomers are incorporated into growing chains. Dead chains with 

a terminal double bond (macromonomers) are generated at both linear and branching catalysts 

in -hydride elimination, transfer to monomer and catalyst deactivation reactions. 

Population balances for a steady-state CSTR drawn from this kinetic mechanism are shown in 

Table 3. In the case of a batch reactor, the left-hand side of these balances should be changed 

for the derivatives of the species with respect to time. At the same time, the last term on the 

right-hand side does not appear because it corresponds to the inlet and outlet streams. 

The model assumes instantaneous activation, and so balances for the activated catalysts ( *
CGCC  

and *
linC ) can be solved using the initial catalyst concentrations as the initial values for the 

activated catalyst concentrations. The model also considers constant monomer concentration. 

Therefore, the CSTR balances are valid for steady-state operation, and the batch reactor 

balances represent the usual constant monomer pressure operating strategy of a semibatch 

reactor (Iedema & Hoefsloot, 2003). As a consequence of this assumption, the multiplication 

of propagation constants by monomer concentration can be considered a constant value, as 

reported in Table 2. 

Some of the population balances of the polymer species are functions of zero order moments 

of the polymeric species distributions of b
,n iR , lin

,1nR  and ,n iP  ( b b
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The first step in the pgf modeling technique is to transform the balance equations of the 

polymeric species (Eq. (42)-(47)) into the pgf domain, obtaining balance equations for the pgfs 

of the polymer species distributions. The distributions of b
,n iR , b=

,n iP  and b
,n iP  are bivariate, 

leading to 2D pgfs. On the other hand, the distributions of lin
,1nR , lin=

,1nP  and lin
,1nP  are univariate 

since these are linear chains, resulting in univariate pgfs. The transformation of the balance 

equations can be carried out without difficulty by applying 2D pgf (Brandolin & Asteasuain, 

2013) and 1D pgf (Asteasuain et al., 2002) transform tables for the bivariate and univariate 

distributions, respectively. The resulting pgf equations for a steady-state CSTR are presented 

in Table 4. The relationship between the pgf balances for CSTR and for a semibatch reactor 

are the same as for the population balances. 

 

In these equations, b
0,0 ( 1, 2)z z , lin

0 ( 1)z , b
0,0 ( 1, 2)z z  , lin

0 ( 1)z  , b
0,0 ( 1, 2)z z  and lin

0 ( 1)z  are 

the pgfs of the distributions of b
,n iR , lin

,1nR , b=
,n iP , lin=

,1nP , b
,n iP  and lin

,1nP , respectively. 

The bivariate distributions of the branched chains and the univariate distributions of the linear 

chains are connected in the distribution of the total concentration of dead polymer chains with 

a terminal double bond, =
,n iP . The total concentration of dead polymer chains with a terminal 

double bond is part of the mass balance of the growing polymer radicals in a CGC-Ti catalyst 

shown in Eq.(42). As mentioned above, b= lin=
, ,n n i n iP P P    and lin=

, 0n iP   for i =2,..,∞. Taking this 

into account, applying the bivariate pgf definition (Eq. (1)) we obtain: 

b lin=
0,0 0,0 0( 1, 2) ( 1, 2) 2 ( 1)z z z z z z      (54)  

This expression can be applied in the pgf balance of b
0,0 ( 1, 2)z z (Eq. (48)). Finally, the pgf of 

the total population of dead polymer species b= lin= b lin
, , , , ,n i n i n i n i n iP P P P P     is 

b b b b lin lin= lin lin
0,0 0,0 0,0 0,0 0 0 0 0

0,0 b b lin lin
0,0 0,0 0 0

( 1, 2) ( 1, 2) 2 ( 1) 2 ( 1)
( 1, 2)

z z z z z z z z
z z

       


   

  

 

  


  
 (55)  



    

Zero order moments of the polymer species distributions are involved in the pgf balance 

equations. Therefore, the balance equations for these moments and for the pgfs must be solved 

simultaneously. The moment equations are drawn from the balance equations of the polymeric 

species (Eqs. (42)-(47)) using well-known techniques. The moment balances for a steady-state 

CSTR are shown in Table 5.  

The complete set of model equations includes the pgf balances (Eqs. (48)-(53)), Eq. (54) and 

(55), the moment balances (Eqs. (56)-(61)), the balances of the activated catalysts (Eqs. (40) 

and (41)) and the pgf inversion method equations (Eq. (33)). The bivariate MWD-LCBD of the 

total population of dead polymer chains will be reported below. Since the chain length domain 

has an order of magnitude of 105, the 2D PAP-IFG method was used. The Papoulis part of the 

inversion method is applied to the chain length domain, while the IFG part is applied to the 

branch domain (order of magnitude 10). The pgf balances have to be solved for all pairs of 

(z1,z2) values required by the inversion method. It should be noted that bivariate pgfs are 

complex variables. Therefore, the pgf equations in which they are involved were split into 

separate equations for their real and complex components in the solution procedure. Additional 

process conditions needed to solve the model equations are shown in Table 6. 

 

Figure 5 shows the bivariate MWD-LCBD predicted by the 2D PAP-IFG method. The 

distribution was also computed by direct solution of the original large system of population 

balances of the polymeric species (Eqs. (42)-(47)) in order to assess the goodness of the pgf 

technique. The pgf solution was very accurate. Parameters NP and N2 were both set to 10, 

according to the guidelines presented above. The value of N2 is larger than the maximum 

significant value in the dimension of the number of branches, which ensures a negligible error 

in the inversion in this dimension. At the same time, a good convergence in the selection of the 

value of parameter Np was observed. This resulted in the accurate prediction of the bivariate 

MWD-LCBD presented in Fig 5. 



    

Even though in some systems the Papoulis part of the 2D PAP-IFG inversion method could be 

unsatisfactory, the thorough tests we have performed suggest that a good performance should 

be expected for most systems. In those cases in which the 2D PAP-IFG method does not exhibit 

a good performance, the 2D IFG method would provide an error-free inversion, possibly at the 

expense of longer computational times. 

The computed MWD-LCBD shows that the polymer sample is characterized by a large 

proportion of linear chains with respect to branched chains. It can also be observed that, as 

expected, chains with higher branch content have higher molecular weights. It is important to 

note the difference in two orders of magnitude in the bivariate distribution between linear 

(m = 1) and branched chains (m ≥ 2), which was also obtained by the pgf solution with high 

precision. 

The number of pgf equations for this model is   2
eq ev n P6 2 12 1 1

2

N
n n N N

       
 

 

  10
12 31 10 1 1 24552

2
       
 

. This number takes into account that there are six different 

pgf variables corresponding to the six polymeric species, and that each of these pgf evaluations 

requires two equations, one for the real and one for the imaginary component of the pgf. On the 

other hand, solving the original set of population balances is useful for comparing the pgf 

results, but it is extremely demanding. Since the population balances need to be parameterized 

for all chains from 1 to the maximum significant chain length, the total number of equations is 

6 100000 600000  . 

The two inversion methods presented in this work (the 2D IFG and the 2D PAP-IFG methods) 

rely on the availability of accurate values for the 2D pgfs, which are obtained from the solution 

of the (usually stiff) system of the model equations. Standard DAE solvers with error control 

can be used for solving the mathematical model of the process. 



    

Figure 6 shows the time evolution of the bivariate MWD-LCBD in a semibatch reactor. At 

initial time, the chain population consists mostly of linear chains. As time progresses, the 

concentration of linear chains slightly decreases as those with terminal double bond react to 

form branched molecules. Chains with higher branch content are formed as the reaction 

proceeds. As expected, chains with a larger number of branches have higher molecular weights. 

It can be noted that each population of branched chains (i.e. with a given number of branches) 

increases in concentration as the reaction proceeds over the time interval, and that the peaks of 

these individual distributions tend to move to lower molecular weights.  

Figure 7 shows the effect of the concentration of H2 on the bivariate MWD-LCBD. Hydrogen 

is used in the operation of this process to control the molecular weight, but it affects the 

branching distribution as well. It can be observed that when the concentration of H2 is increased, 

the molecular weight of the polymer decreases (curves shift to lower chain lengths). The effect 

on the branching distribution depends on the branch content of the chains. The height of the 

curves indicates that the concentration of chains with lower branch content (m ≤ 3) increases 

when the concentration of H2 is increased. The opposite effect is observed for chains with higher 

branch content. Note that curve areas should have been compared, but in this case their height 

follows the same trend and they are easier to read in the graph. 

 

Figure 8 illustrates the influence of the ratio of the constrained geometry catalyst in the catalyst 

mix on the bivariate MWD-LCBD. Linear chains and those with up to one branch (m = 2) are 

included in the figure. The behavior of chains with higher branch content is similar to the latter. 

The constrained geometry catalyst is the one that allows incorporating branches on growing 

polymer chains by means of the propagation of terminal double bonds. When its ratio is 

increased, the concentration of linear chains decreases. At the same time, the molecular weight 

of branched chains increases. Besides, their concentration reaches a maximum for a particular 

value of rCGC. For chains with up to two branches (m = 3), this maximum is observed at 



    

rCGC = 0.8, as shown in the figure for the case of m = 2. For chains with more branches, the 

maximum is observed at rCGC = 0.4. 

 

As for the semibatch model, it is not possible to provide a comparison with the direct integration 

of the mass balances of Eqs. (42)-(47). An implicit method is needed due to the stiffness of the 

system of equations. The size of this system is large (600000 equations as mentioned above), 

and the implicit method requires a Jacobian matrix with a corresponding squared dimension. 

This leads to a prohibitively large memory allocation space. The solution of the mass balances 

for the CSTR reactor could be achieved because, in that case, the 600000 algebraic equations 

can be solved recursively for increasing values of n, since the mass balances of species of chain 

length n only depend on species of shorter lengths. For the semibatch model with the pgf 

equations, parameters NP and N2 were set to NP = 6 and N2 = 10 solving for Nn = 31 points, so 

the number of equations was   2
eq ev n P6 2 12 1 1

2

N
n n N N

       
 

 

  10
12 31 6 1 1 15624

2
       
 

. 

It is worth noting that the 2D pgf technique can be used for modeling bivariate distributions of 

polymer properties in any system whose elementary reaction steps are included in the 2D pgf 

Transform Table presented in our previous work (Brandolin & Asteasuain, 2013). This includes 

all the usual copolymer systems and branched polymers systems prior to the gel point. Only 

systems for which the termination rate constant is chain-length dependent cannot be modeled, 

because with the state-of-art 2D pgf technique it is not possible to obtain the pgf transform of 

chain-length dependent termination reactions. For the inversion step of the 2D pgf technique, 

both inversion methods presented in this work allow applying the pgf methodology to polymer 

systems without constraints on the range of values of the distributed properties.  

 



    

4. Conclusions 

In this work two inversion methods of 2D pgfs, which are a key component of the 2D pgf 

technique for modeling bivariate distributions of polymer properties, are presented. They were 

developed with a focus on recovering pgf transforms of bivariate distributions characterized by 

independent domains with different ranges of values. The first method is based on a double 

application of an inversion method of complex univariate pgfs. The second method combines 

the univariate inversion method of complex pgfs with a univariate inversion method of real 

pgfs. Both 2D inversion methods exhibited very good accuracy. From the point of view of the 

number of pgf evaluations, the first method is more appropriate when the ranges of values of 

the independent domains of the bivariate distribution are not too large. On the other hand, the 

second method becomes advantageous when the range of values of the larger independent 

domain increases. The complete 2D pgf technique was successfully applied to the prediction of 

the bivariate MWD-LCBD of a polyethylene produced by a mixed metallocene system, 

showing the potential of this method for modeling bivariate distributions of polymer properties 

of any type. Finally, this methodology has potential as a tool in industrial polymer processes to 

aid the synthesis of polymers with prespecified molecular architecture. 
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Appendix 

A.1. Error of the 2D IFG inversion method: sensitivity to the values of parameters N1 

and N2 

To simplify the analysis, N1 was kept at the value of 140 used in the examples shown in the 

main text, while N2 was set to 12, 10 and 8. The results are shown in Figs A. 1-A. 3. Note that 

as N1 is kept in a conservative value, only the error in the direction of m is affecting the results. 

That is, the error expression in Eq. (25) reduces to    
1

2 , ,
k

e n m p n m kN




  .  

The error increases as N2 becomes smaller, as predicted by Eq. (25), because a larger portion 

of the true distribution is “left out”, affecting the computed distribution as explained in the main 

text. The distribution points for the lower values of m are the most affected, since the larger 

values of the descending “left out” portion of distribution are summed to them. Table A. 1 

shows an example of the accuracy of the error formula shown in Eq. (25). Minor differences 

between the actual and theoretical errors arise from round off error in the numerical evaluation 

of the inversion formula presented in Eq. (22). Results similar to the ones shown in Figs A. 1-

A. 3 and in Table A. 1 are obtained when changing the values of N1 instead of N2, and for 

distribution  2 ,p n m . 

 
A.2. Error of the 2D IFG-PAP inversion method: sensitivity to the values of parameter 

Np 

The procedure for selecting the value of Np for the 2D IFG-PAP method is illustrated in Fig A. 

4 for distribution  1 ,p n m . The whole distribution was recovered, but for the sake of clarity 



    

only the results corresponding to m = 5 are shown. The recovered distributions tend to converge 

as Np increases from 23 to 35. In fact, distributions computed using Np from 30-35 almost 

coincide. Slight differences begin to appear at Np = 37, while the round-off error causes a 

completely wrong distribution at Np = 41. Finally, Np = 30 was selected from the set of 

coincident distributions. The analytical distribution is included in the figure to show that the 

recovered distributions converge to the true distribution, but it is not required in the process of 

assigning parameter Np. The accuracy in the inversion, that is, the distance between the 

converged distribution and the true distribution, cannot be guaranteed. In general, accuracy 

cannot be assured for methods based on Laplace transform inversion. However, experience 

shows that the higher the confidence in the convergence procedure (i.e. the higher the number 

of very similar distributions in the convergence zone), the higher is the accuracy in the 

inversion. 

 

Similar results were obtained for distribution  2 ,p n m . It should be mentioned that once an 

appropriate value of Np is selected, this value works well for distributions resulting from 

similar conditions (i.e. similar values of 1 and 2 for distribution  1 ,p n m , similar process 

conditions for a MWD in a polymerization process). Therefore, it is not necessary to re-set Np 

each time a new distribution is computed. 

 

  



    

 
Fig 1. Analytical distribution  1 ,p n m  recovered with the 2D IFG method. 

 

 
Fig 2. Analytical distribution  2 ,p n m  recovered with the 2D IFG method. 

  



    

 

Fig 3. Analytical distribution  1 ,p n m  recovered with the 2D PAP-IFG method. 

 

 
Fig 4. Analytical distribution  2 ,p n m  recovered with the 2D PAP-IFG method. 

  



    

 
Fig 5. Bivariate MWD-LCBD of the polyethylene produced in the mixed catalyst system in a 

steady-state CSTR reactor. 

  



    

 

Fig 6. Time evolution of the bivariate MWD-LCBD of the polyethylene produced in the 
mixed catalyst system in a semibatch reactor. Parameters of the pgf method: NP = 6, N2 = 10. 

  



    

 

  
Fig 7. Effect of the concentration of H2 on the bivariate MWD-LCBD of the polyethylene 

produced in the mixed catalyst system in a semibatch reactor. [H2]base case is the concentration 
of H2 reported in Table 6; reaction time: 800 s. Parameters of the pgf method: NP = 6, N2 = 10. 

  



    

 

Fig 8. Effect of the ratio of constrained geometry catalyst in the catalyst mix (rCGC) on the 
bivariate MWD-LCBD of the polyethylene produced in the mixed catalyst system in a 

semibatch reactor. Reaction time: 800 s. Parameters of the pgf method: NP = 6, N2 = 10. 

 
 



    

 

Fig A. 1. Analytical distribution  1 ,p n m  recovered with the 2D IFG method with N1 = 140 

and N2 = 12 (error slightly affects the curve of m = 1, see Fig 1 for comparison). 

  



    

 

 

Fig A. 2. Analytical distribution  1 ,p n m  recovered with the 2D IFG method with N1 = 140 

and N2 = 10 (the curve corresponding to m = 10 was not included since m ≤ N2-1). 

 



    

 

Fig A. 3. Analytical distribution  1 ,p n m  recovered with the 2D IFG method with N1 = 140 

and N2 = 8 (the curve corresponding to m = 8 was not included since m ≤ N2-1). 

  



    

 

Fig A. 4. Analytical distribution  1 ,p n m , m = 5, recovered with the 2D PAP-IFG method 

with NP = 23-41 and N2 = 16. 

  



    

 
Table 1. Kinetic mechanism for the polymerization of ethylene using a mixed metallocene 
catalyst system. 

Step Kinetic equation 

CGC-Ti activation and initiation a,CGC *
CGC CGC

kC C  

 i,CGC* b
CGC 1,1

kC M R   

Et[Ind]2ZrCl2 activation and initiation a,lin *
lin lin

kC C  

 i,lin* lin
lin 1,1

kC M R   

Propagation CGC-Ti p,CGCb b
, 1,

k

n i n iR M R    

Propagation Et[Ind]2ZrCl2 p,linlin lin
,1 1,1

k

n nR M R    

-hydride elimination CGC-Ti ,CGCb * b=
, CGC ,

k

n i n iR C P   

-hydride elimination Et[Ind]2ZrCl2 ,linlin * lin=
,1 lin ,1

k

n nR C P   

Transfer to monomer CGC-Ti M,CGCb * b=
, CGC ,

k
n i n iR M C P    

Transfer to monomer Et[Ind]2ZrCl2 M,linlin * lin=
,1 lin ,1

k
n nR M C P    

Transfer to hydrogen CGC-Ti H,CGCb * b
, 2 CGC ,

k
n i n iR H C P    

Transfer to hydrogen Et[Ind]2ZrCl2 H,linlin * lin
,1 2 lin ,1

k
n nR H C P    

Terminal double bond propagation CGC-Ti p,TDPb = b
, , ,

k

n i m j n m i jR P R     

Catalyst deactivation (growing chains) CGC-Ti d1,CGCb i b=
, CGC ,

k
n i n iR C P   

Catalyst deactivation (growing chains) 
Et[Ind]2ZrCl2 

d1,linlin i l=
,1 lin ,1

k
n nR C P   

Catalyst deactivation (active catalyst) CGC-Ti d2,CGC i
CGC CGC

kC C  

Catalyst deactivation (active catalyst) Et[Ind]2ZrCl2 d2,lin i
lin lin

kC C  

 

  



    

Table 2. Kinetic parameters for the polymerization of ethylene using a mixed metallocene 
catalyst system (Iedema & Hoefsloot, 2003). 

Kinetic constant Value Units 

i,CGC p,CGCk k  1 - 

i,lin p,link k  1 - 

 p,CGCk M  500 s-1 

 p,link M  500 s-1 

,CGCk  0.3 s-1 

,link  0.7 s-1 

M,CGC P,CGCk k  0 - 

M,lin P,link k  0 - 

H,CGCk  250 m3·kmol-1·s-1 

H,link  0 m3·kmol-1·s-1 

P,TDPk  1750 m3·kmol-1·s-1 

d1,CGC d2,CGC d1,lin d2,CGCk k k k    0 s-1 

 

  



    

Table 3. Population balance equations for a steady-state CSTR. 

Species Balance Equation 

*
CGCC  

      
 

* b
i,CGC CGC ,CGC M,CGC H,CGC 2 ,

1 1

* *
CGC,feed CGC*

d2,CGC CGC

0 n i
n i

k M C k k M k H R

C C
k C





 

 
       


 


 (40)

*
linC  

      
 

* lin *
i,lin lin ,lin M,lin H,lin 2 ,1 d2,lin lin

1

* *
lin,feed lin

0 n
n

k M C k k M k H R k C

C C








       





 (41)

b
,n iR  

      
    

* b b
i,CGC CGC ,1 ,1 p,CGC 1, ,1 ,

b
,CGC d1,CGC M,CGC H,CGC 2 ,

1 1
b b

p,TDP , , , ,
1 1 1 1

b b
, ,feed ,

0 1n i n i n n i

n i

n i

n i m j m j n m i j
m j m j

n i n i

k M C k M R R

k k k M k H R

k R P P R

R R



  

   
 

 
   

          

     
                  

    

 

 




 (42)

lin
,1nR  

      

      

* lin lin
i,lin lin ,1 p,lin 1,1 ,1 ,1

lin lin
,1,feed ,1lin

,lin d1,lin M,lin H,lin 2 ,1

0 1n n n n

n n

n

k M C k M R R

R R
k k k M k H R

 



          

           

 (43)

b=
,n iP  

  

 

b b= b
,CGC d1,CGC M,CGC , p,TDP , ,

1 1

b= b=
, ,feed ,

0 n i n i m j
m j

n i n i

k k k M R k P R

P P





 

 
             

      


 (44)

lin=
,1nP  

  

 

lin lin= b
,lin d1,lin M,lin ,1 p,TDP ,1 ,

1 1

lin= lin=
,1,feed ,1

0 n n m j
m j

n n

k k k M R k P R

P P





 

 
             

      


 (45)

b
,n iP     b b

, ,feed ,b
H,CGC 2 ,0

n i n i

n i

P P
k H R



           (46)

lin
,1nP     lin lin

,1,feed ,1lin
H,lin 2 ,10

n n

n

P P
k H R



           (47)



    

Table 4. 2D pgf balance equations for a steady-state CSTR. 

pgf Balance Equation 

b
0,0 ( 1, 2)z z  

        
     

     
 

* b b b b
i,CGC CGC 1 2 p,CGC 0,0 0,0 0,0 0,0

b b
,CGC d1,CGC M,CGC H,CGC 2 0,0 0,0

b b b b
p,TDP 0,0 0,0 0,0 0,0 0,0 0,0 0,0

b b
0,0 0,0 feed

0 1 ( 1, 2) ( 1, 2)

( 1, 2)

( 1, 2) ( 1, 2) ( 1, 2)

( 1, 2)

k M C z z k M z z z z z

k k k M k H z z

k z z z z z z

z z



   

 

      

 

  

  

    

 




  b b
0,0 0,0 ( 1, 2)z z 



 (48)

lin
0 ( 1)z  

        
     

    

* lin lin lin lin
i,lin lin p,lin 0 0 0 0

lin lin
,lin d1,lin M,lin H,lin 2 0 0

lin lin lin lin
0 0 0 0feed

0 1 1 ( 1) ( 1)

( 1)

( 1) ( 1)

k M C z k M z z z

k k k M k H z

z z



   

 

   



   

  




 (49)

b
0,0 ( 1, 2)z z   

   

 
    

b b
,CGC d1,CGC M,CGC 0,0 0,0

b b b b
0,0 0,0 0,0 0,0feedb b b

p,TDP 0,0 0,0 0,0

0 ( 1, 2)

( 1, 2) ( 1, 2)
( 1, 2)

k k k M z z

z z z z
k z z

  

   
  



   

 

  


 

 (50)

lin
0 ( 1)z   

     
    

lin lin b lin lin
,lin d1,lin M,lin 0 0 p,TDP 0,0 0 0

lin lin lin lin
0 0 0 0feed

0 ( 1) ( 1)

( 1) ( 1)

k k k M z k z

z z

     

   



 

   

   




 (51)

b
0,0 ( 1, 2)z z    

    b b b b
0,0 0,0 0,0 0,0feedb b

H,CGC 2 0,0 0,0

( 1, 2) ( 1, 2)
0 ( 1, 2)

z z z z
k H z z

   
 




 

 (52)

lin
0 ( 1)z    

    lin lin lin lin
0 0 0 0feedlin lin

H,lin 2 0 0

( 1) ( 1)
0 ( 1)

z z
k H z

   
 




   (53)

 

  



    

Table 5. Moment balance equations for a steady-state CSTR. 

Moment Balance Equation 

b
0,0  

      * b
i,CGC CGC ,CGC d1,CGC M,CGC H,CGC 2 0,0

b b
0,0,feed 0,0

0 k M C k k k M k H 

 


    




 (56)

lin
0        

lin lin
0,feed 0* lin

i,lin lin ,lin d1,lin M,lin H,lin 2 00 k M C k k k M k H

 





       (57)

b
0,0     

b b
0,0,feed 0,0b b b

,CGC d1,CGC M,CGC 0,0 p,TDP 0,0 0,00 k k k M k

 
  



 
 

      (58)

lin
0

    
lin lin
0,feed 0lin b lin

,lin d1,lin M,lin 0 p,TDP 0,0 00 k k k M k

 
  



 
 

      (59)

b
0,0   

b b
0,0,feed 0,0b

H,CGC 2 0,00 k H
 





   (60)

lin
0   

lin lin
0,feed 0lin

H,lin 2 00 k H
 





   (61)

 

  



    

Table 6. Process operating conditions used in the model simulation (Iedema & Hoefsloot, 
2003). 

Process variable Value Units 

 2H  1.13×10-3 kmol·m-3 

  300 s 

CGCr  0.8 - 

*
CGC,feedC  4×10-6· CGCr  kmol·m-3 

*
lin,feedC  4×10-6·  CGC1 r  kmol·m-3 

 b b
0,0 0,0 feed

( 1, 2)z z  ,  lin lin
0 0 feed

( 1)z  , 

 b b
0,0 0,0 feed

( 1, 2)z z   ,  lin lin
0 0 feed

( 1)z   , 

 b b
0,0 0,0 feed

( 1, 2)z z  ,  lin lin
0 0 feed

( 1)z  , b
0,0,feed , 

lin
0,feed , b

0,0,feed  , lin
0,feed  , b

0,0,feed , lin
0,feed   

0 kmol·m-3 

 

 

  



    

Table A. 1. Actual and theoretical inversion errors using the 2D IFG method with N1 = 140 

and N2 = 8 for the analytical distribution  1 ,p n m . 

n m Actual error 

    , ,p n m p n m
Theoretical Error 

(Eq. (25)) 

70 1 1.1219E-05 1.1267E-05 

80 1 1.8853E-04 1.8858E-04 

90 1 9.0836E-04 9.0841E-04 

100 1 1.4461E-03 1.4462E-03 

110 1 8.4972E-04 8.4977E-04 

120 1 2.0170E-04 2.0176E-04 

70 3 2.4566E-06 2.5600E-06 

80 3 4.2732E-05 4.2847E-05 

90 3 2.0628E-04 2.0640E-04 

100 3 3.2846E-04 3.2858E-04 

110 3 1.9295E-04 1.9308E-04 

120 3 4.5726E-05 4.5841E-05 

70 5 2.8717E-07 4.1023E-07 

80 5 6.7281E-06 6.8660E-06 

90 5 3.2923E-05 3.3075E-05 

100 5 5.2495E-05 5.2653E-05 

110 5 3.0789E-05 3.0939E-05 

120 5 7.2078E-06 7.3457E-06 

70 6 4.4383E-08 1.4651E-07 

80 6 2.3375E-06 2.4521E-06 

90 6 1.1686E-05 1.1812E-05 

100 6 1.8672E-05 1.8804E-05 

110 6 1.0923E-05 1.1050E-05 

120 6 2.5087E-06 2.6234E-06 
 

 


