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We find the Weyl law followed by the eigenvalues of contractive maps. An important property
is that it is mainly insensitive to the dimension of the corresponding invariant classical set, the
strange attractor. The usual explanation for the fractal Weyl law emergence in scattering systems
(i.e., having a projective opening) is based on classical phase space distributions evolved up to the
quantum to classical correspondence (Ehrenfest) time. In the contractive case this reasoning fails
to describe it. Instead, we conjecture that the support for this behavior is essentially given by the
strong non-orthogonality of the eigenvectors of the contractive superoperator.

PACS numbers: 05.45.Mt, 03.65.Sq, 05.45.Df

I. INTRODUCTION

The study of open quantum systems has recently be-
come a very active field [1]. The reasons are many, includ-
ing the development of quantum information and com-
putation [2, 3], quantum optics and scattering systems
[4, 5]. Particularly in this latter case the fractal Weyl
law has been proposed. This law predicts the way in
which the long-lived resonances of these systems grow
as a function of ~. The fundamental ingredient is the
classical invariant set, which in this kind of systems is
the repeller, i.e., the set of trajectories non-escaping in
the past and in the future. In fact, this law says that the
number of long-lived quasibound states is proportional to
~
−(1+dH), where dH is the partial Hausdorff dimension of

the repeller [6].
There is a vast literature that has contributed to gain

confidence on this conjecture by means of numerical tests
conducted on many systems [7]. However, open quantum
maps have been the main tool in these studies, as they
offer great simplicity in the calculations without losing
much generality [8–10]. For them, the fractal Weyl law
predicts that the resonances grow as ~−d, where d is the
partial fractal dimension of the repeller. But if the way
to open the system is nonprojective the available litera-
ture is very scarce. Recently [11] this situation has been
analyzed for dissipative quantum operations that can be
thought as a phase space contraction leading to dissipa-
tive dynamics [12]. In that work a dissipative baker map
has been studied, where all classical initial conditions
asymptotically fall on a strange attractor. The quantum
counterpart has been implemented by means of a noise
superoperator written in terms of Kraus operators [13].
The number of long-lived resonances has been found to
behave in a rather different way compared to the usual
prediction of the fractal Weyl law. In fact, this number
grows as a power law in ~, but the exponent is mainly
insensitive to the dimension of the fractal invariant set.
In this work we analyze this behavior in depth. We

find the Weyl law for the spectra of contractive noise. In
order to explain its emergence and discrepancies with the
usual fractal Weyl law, we first follow the same steps than
in the case of scattering systems (i.e., having a projec-

tive opening). This is done in terms of an initial classical
distribution (that in this case shrinks following the asso-
ciated dissipation) evolved up to the quantum to classical
correspondence time TEhr, the Ehrenfest time. We pro-
pose a theoretical expression for this time based on dy-
namical considerations and confirm its validity by means
of the exploration of the classical phase space distribu-
tions and the eigenvectors of the contractive superoper-
ator. However, this reasoning does not lead to a satis-
factory explanation. We conjecture that the strong non-
orthogonality of the right eigenvectors is the main reason
behind this behavior.
This paper is organized as follows: in Section II we

briefly describe the dissipative model that we have used
and give the expression of the Weyl law for the contrac-
tive baker map. In Section III the numerical results are
analyzed and we explore possible explanations for the
emergence of the here obtained Weyl law supported by
studies of the phase space distributions and the proper-
ties of eigenvectors. Finally, we give our conclusions in
Section IV.

II. THE WEYL LAW FOR CONTRACTIVE

MAPS

As in our previous work [11] we have investigated the
spectral behavior of the dissipative baker map, which is
defined on the 2-torus T 2 = [0, 1) x [0, 1) by

B(q, p) =
{

(2q, ǫ p/2) if 0 ≤ q < 1/2
(2q − 1, (ǫ p+ 1)/2) if 1/2 ≤ q < 1

. (1)

Besides contracting the torus in the p direction by a
ǫ factor, this map stretches the unit square by a factor
of two in the q direction, squeezes it by the same factor
in the p direction, and then stacks the right half onto
the left one. As a result a strange attractor sets in after
a few time steps regardless of the nature of the initial
condition.
The first step to quantize it is to impose on any

state |ψ〉 periodic boundary conditions on the torus, for
both the position and momentum representations. Then,
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we take 〈q + 1|ψ〉 = ei2πχq 〈q|ψ〉, and 〈p+ 1|ψ〉 =
ei2πχp〈p|ψ〉, with χq, χp ∈ [0, 1). There is a finite dimen-
sion N = (2π~)−1 for the corresponding Hilbert space
and a discrete set of position and momentum eigenstates,
which is given by |qj〉 = |(j + χq)/N〉 (j = 0, 1, . . .N−1),
and |pk〉 = |(k + χp)/N〉 (k = 0, 1, . . .N − 1), whose
eigenvalues are qj , pk. A discrete Fourier transform, i.e.

(GN )kj ≡ 〈pk|qj〉 =
1√
N

exp(
−i2π
N

(j + χq)(k + χp)).

relates these sets. We take anti-symmetric boundary con-
ditions, this meaning χq = χp = 1/2. For an even N -
dimensional Hilbert space, the quantum baker map is
defined in the momentum representation as [14, 15]

BN =

(

GN/2 0
0 GN/2

)

G−1
N , (2)

with BN a unitary matrix (closed quantum baker map).
We introduce dissipation by means of a non-unital

quantum operation [12] implemented by an N2 × N2

Kraus superoperator of the form:

M =
N−1
∑

µ=0

Aµ ⊗Aµ†. (3)

Quantum operations act on the density matrix, ⊗ de-
notes the place where this later must be inserted in or-
der to implement the corresponding quantum operation.
Here

Aµ =

N−1
∑

i=µ

√

(

i
i− µ

)

ǫi−µ(1− ǫ)µ|pi−µ〉〈pi| (4)

are operators that induce transitions towards the momen-
tum state |pi=0〉.The coupling constant ǫ has the same
value as the dissipation parameter of the corresponding
classical map. M is a trace preserving (

∑

µA
†
µAµ = 1)

and non-unital (
∑

µAµA
†
µ 6= 1) superoperator, which de-

scribes a process contracting phase space volume. The
complete quantum dissipative dynamics is obtained by
composing M with the unitary map (2),

$ = (BN ⊗B†
N ) ◦M. (5)

In this work we have computed the eigenvalue spec-
trum of superoperoperator (5) for different values of the
contraction parameter (ǫ = 0.8, 0.7, 0.6, 0.4) and of
the dimension (90 ≤ N ≤ 180). For each case we
have counted the number of complex eigenvalues λ (with
|λ| = exp(−γ

2 )) with a decay rate γ smaller than a given
value γcut. The data are collected in Fig. 1 which dis-
plays the fraction of resonances flong−lived as a func-
tion of ǫ, N and the cut-off value γcut (in a wide range
2 ≤ γcut ≤ 14).
By fitting these numerical results, we obtain a remark-

ably compact and simple expression:
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FIG. 1: (Color online) Weyl law for contractive noise:
flong−lived as a function of (γcutǫ)/N . Results for ǫ =
0.8, 0.7, 0.6 and 0.4 are represented by means of up triangles
(in red), down triangles (in black), dots (in blue) and squares
(in magenta), respectively.

flong−lived(ǫ, γcut, N) =
Nγ<γcut

N2
= C (ǫγcut)

2ν(N2)−ν .

(6)
The values of C and ν, for four different values of ǫ,

are given in Table I. In the fourth column we display
the semiclassical prediction νsc, which will be analyzed
in Section III.

TABLE I: Values of the fitted coefficients C (column two)
and ν (column three) for different values of ǫ. The fourth
column displays the semiclassical prediction νsc described in
Section III.

ǫ = 0.8 C = 5.3 ν = 0.72 νsc = 0.24
ǫ = 0.7 C = 4.4 ν = 0.76 νsc = 0.34
ǫ = 0.6 C = 4.7 ν = 0.79 νsc = 0.42
ǫ = 0.4 C = 5.3 ν = 0.85 νsc = 0.57

These findings generalize the ones obtained in [11]. On
the one hand they confirm the existence of a power law

dependence of
Nγ<γcut

N2 on N with an exponent which, in
a meaningful range of validity, is fairly insensitive to the
value of the dissipation parameter ǫ. On the other hand,
they hint (within a precision of 20%) on a very simple
dependence of the prefactor with both ǫ and the cut-off
value γcut. We will leave the analysis of this prefactor,
which is in general believed to be system-dependent, for
future work [18] and concentrate in the following on the
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scaling of
Nγ<γcut

N2 with N . We will seek for an expression
of ν, in order to determine to which extent this expo-
nent can be related to the underlying classical dynamics.
For this we will follow an approach analogous to the one
used in the formulation of the fractal Weyl law for chaotic
maps with a projective opening [10] and discuss its limi-
tations in the case of a contractive noise.

III. CLASSICAL AND QUANTUM SUPPORT

FOR THE EIGENVALUE STATISTICS

A heuristic formulation of the fractal Weyl law for
chaotic maps with a projective opening is based on the as-
sumption that the number of long-lived resonances (asso-
ciated with the classical repeller) scales as the volume of
the evolved initial classical distribution up to the Ehren-
fest time, that is, the volume of a finite (Ehrenfest)time
repeller [10]. This volume can be calculated by a combi-
nation of two exponential laws that relate the probability
to reside in the system (non escaping trajectories) and
the quantum to classical correspondence.
In the case of a contractive noise the connection be-

tween the long-lived resonances and the structure of the
classical invariant also exists. In particular we have veri-
fied in [11] that the Husimi representation of the projec-
tor corresponding to the eigenfunctions with slow escape
rate concentrates on the phase space region correspond-
ing to the classical strange attractor. It seems then nat-
ural to generalize the considerations usually applied to
chaotic maps with a projective opening to the contrac-
tive case and investigate whether this scheme succeeds in
accounting for the Weyl law of eq.(6). Our starting point
will be the following relation [16]:

flong−lived(ǫ, γcut, N) ∼ A2
clas (7)

between the fraction of long-lived resonances and the vol-
ume of the attractor Aclas which shrinks exponentially
until the Ehrenfest time according to:

Aclas = exp−(γcl TEhr). (8)

Notice in eq.(7) the square (instead of linear) depen-
dence on Aclas , which is due to the use of the superoper-
operator formalism to model the contractive noise. The
classical decay rate γcl and the correspondence (Ehren-
fest) time TEhr are then the two main ingredients of this
approach that should be evaluated.
The classical decay rate can be easily calculated by

following the time evolution of a uniform distribution in
phase space under the action of dissipation. It is straight-
forward to see that after t time steps the original dis-
tribution will occupy 2t fringes in the q direction, each
fringe having a width ( ǫ2 )

t. Hence the total phase space
area occupied by the distribution as a function of time is
Aclas ≡ e−tγcl = ǫt, and then the classical decay rate is
given by γcl = −lnǫ.

Determination of the Ehrenfest time is a more subtle
issue. Understood as the time at which the quantum and
the classical descriptions differ, we can start our reason-
ing following the lines of what is done in the case of area
preserving maps. In fact, there are two different ways to
conceive this correspondence time. The first one is the
time TEhr1 at which a given initial semiclassical distribu-
tion (a coherent state of width

√
~, for instance) spreads

up to the border of the system along the unstable direc-
tion (manifold). This time is related to the expansive
Lyapunov exponent λ1, such that TEhr1 ∝ lnN

λ1
. On the

other hand, the time TEhr2 is that corresponding to the
initial distribution shrinking along the stable direction to
a size of the order of the Planck cell (1/N). This time
is related to the contractive Lyapunov exponent λ2, such
that TEhr2 ∝ lnN

|λ2|
. Of course, in the case of an area

preserving map λ1 + λ2 = 0 and both times coincide.
However, under a contractive noise, our dissipative map
gives λ1 = ln2 while λ2 = −ln 2

ǫ . Hence, we propose

the shortest TEhr2 ∝ lnN/ln 2
ǫ as the global quantum to

classical correspondence time for this map.

In order to verify this assumption, we have numerically
estimated the correspondence time. This can be accom-
plished quite easily by evaluating the overlap Ocl−q be-
tween the finite time classical attractor and the Husimi
distribution of a uniform initial state evolved up to the
same time. If we exploit the fact that for the baker map
the interesting features of the distribution (namely its
fractality) are only in the p coordinate we can notably
simplify this task. In fact, we just calculate the norm of
the evolved wavefunction, restricted to the region occu-
pied by the classical distribution at any given time. As a
result we have obtained Fig. 2 where these overlaps are
shown as a function of the map iterations. We have found
that, besides small fluctuations and the lack of precision
inherent to the discrete time steps of the map, the results
confirm our theoretical prediction (see vertical lines as a
guide).

Inserting the expressions of γcl and TEhr2 in eq.(8)
gives Aclas = N−νsc , where νsc = 2 − d, and d =
1 + ln (2)/(ln (2) − ln (ǫ)) is the fractal dimension of the
classical attractor. The values of the semiclassical νsc
are listed in the fourth column of Table I, showing a dra-
matic discrepancy with the values obtained by fitting our
numerical results with eq. (6). Besides an overall factor
of ∼ 2 between ν and νsc, the semiclassical exponent
shows a dependence on ǫ (via the fractal dimension of
the attractor) which is absent in the fitted ν which are
practically constant. Then, it becomes clear that the way
of reasoning that has provided with a reasonable expla-
nation for the emergence of the usual fractal Weyl law
for systems subjected to projective noise can no longer
be applied to contractive dynamics. We are now faced
with the question of where this discrepancy comes from.

At the basis of eq.(7) is the assumption that the num-
ber of long-lived quantum states can be approximated
by the number of Planck cells which fit into the phase
space volume of the classical invariant set. This, in turn,
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FIG. 2: (color online) Overlap between the phase space region
occupied by the quantum and classical attractors as a function
of time t (map iterations). Upper panel corresponds to ǫ =
0.4, lower panel to ǫ = 0.8. Results for N = 100, 200, and 400
are represented with squares (in black), dots (in blue) and up
triangles (in magenta), respectively. Vertical lines show the
corresponding theoretical values of TEhr2 for N = 100, 200,
and 400. (full, dashed and dotted lines, respectively).

supposes that to a good approximation the eigenfunc-
tions supported by this set are non-overlapping. Even
though we cannot strictly speak of orthogonality, since
the operators describing open systems are not normal,
we know that in the case of projective openings the
long-lived eigenfunctions are quasi-orthogonal (while the
short-lived ones present a high degree of degeneracy).
This explains the success of the fractal Weyl law in the
projective case. In the case of contractive dynamics we
will investigate this point by defining the overlap ma-

trix Pij = Tr(R†
iRj), where Ri are the right eigenstates

corresponding to the superoperator $ of Eq. (5) (this is
not to be confused with the biorthogonality of the right
and left eigenfunctions of a superoperator, which states

that Tr(L†
iRj) = δi,j). The overlap matrix elements cor-

responding to the contractive map with N = 180 and
ǫ = 0.4, 0.6, 0.8 for the 200 longest-lived eigenstates

are displayed in panels (a), (b), and (c) of Fig. 3, respec-
tively. A grayscale is used to represent them , going from
white corresponding to value 0 to black corresponding to
the maximum values. We observe that the off-diagonal
elements are clearly non negligible. Moreover, their value
grows with the contractive power of the corresponding
map (as ǫ decreases). For comparison we show in panel
(d) the overlap matrix for a projective case, obtained by
opening the baker map along two symmetric bands in the
q-direction, of width δp = 0.1 and centered at p = 0 and
p = N−1. In this case, as expected, the matrix is almost
diagonal.

200j

i
200

100

(a)

(c)

(b)

(d)

1000

FIG. 3: Overlap matrices Pij of the first 200 right eigenstates
with N = 180 (ordered by decreasing modulus of the eigen-
values) corresponding to the contractive map for ǫ = 0.4, 0.6,
and 0.8, (panels (a), (b), and (c) ,respectively). For compar-
ison we show the same overlap matrix but for a projective
opening that amounts to 0.2 of the phase space. Only the
upper half of the matrices is shown.

The different degree of non-orthogonality of the long-
lived resonances in both models is also reflected in the
phase space distribution of these states. In panel a) and
c) of Fig. 4 we show the sum up to γcut of the Husimi
representation of the longest-lived right eigenstates:

γcut
∑

γ=0

〈z|Rγ |z〉〈z|R†
γ |z〉

〈Rγ |R†
γ〉

, (9)

with 〈z|Rγ |z〉 = Tr(R†
γ , |z〉〈z|) where |z〉 are coherent

states centered at z = (q, p). Panels b) and d) display
the analogous sum (9) corresponding to the Husimi repre-
sentation but of the Schur eigenvectors, which constitute
the orthogonal basis associated with the eigenvalues λ
with |λ| ≥ exp(−γcut

2 ).
In the case of the contractive map (upper line) we ob-

serve that the area of phase space occupied by the sum
of the Husimi distributions is smaller than the area cor-
responding to the subspace spanned by the Schur decom-
position. This is a clear sign of the non-orthogonality of
the eigenstates for this kind of superoperators [17].
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On the contrary, the lower panels (c) and (d) show that
for the case of a projective opening both distributions
look much the same, indicating that the assumption of
quasi-orthogonality for the long-lived eigenfunctions is
justified.

0.5
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(c)

(b)

(d)

0.5

0

p 1

q
1

FIG. 4: In panel (a) we show the sum (9) of the Husimi repre-
sentation corresponding to the first 600 right-right eigenvec-
tors for the contractive map at ǫ = 0.6 for N = 180. Panel
(b) displays the analogous sum corresponding to the Husimi
representation of the Schur eigenvectors. For comparison, in
the lower panels (c) and (d) we show the same distributions
than in panels (a) and (b) respectively but for the projective
opening case of Fig. 3 (d).

IV. CONCLUSIONS

We have found an expression of the Weyl law for the
spectra of the contractive baker map. An analogous sim-

ple dependence on (γcutǫ)/N has also been obtained for
a dissipative kicked top map on the sphere. We were not
able to explain the emergence of this law by means of
the usual line of reasoning applied to the projective case.
Very simply put, the idea is counting resonances. This
has been traditionally accomplished by partitioning the
phase space volume occupied by a finite time classical
invariant set (the repeller). In fact, implies a pseudo or-
thogonality of the long-lived eigenstates. We could verify
that this is indeed the case for the projectively opened
baker map, a system that has been paradigmatically used
in the fractal Weyl law literature. But when it comes
to the dissipative baker map used in this work, we have
clearly identified a high degree of non-orthogonality. This
is the main reason behind the failure of the usual reason-
ing for explaining the emergence of the Weyl law.

As a result, we think that a new method for counting
the long-lived resonance other than just partitioning the
corresponding volume in phase space into Planck cells, is
the key to understand the statistical behavior of contrac-
tive maps. In the future, we hope to find a theoretical
explanation for it, including the one of the prefactor and
the dependence on ǫ and γcut [18].
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