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ABSTRACT:  

More than 60% of all breast neoplasias are ductal carcinomas expressing estrogen 

(ER) and progesterone receptors (PR). In contrast, most of the spontaneous, chemically 

or MMTV induced tumors, as well as tumors arising in genetically modified mice do not 

express hormone receptors. We developed a model of breast cancer in which the 

administration of medroxyprogesterone acetate (MPA) to BALB/c female mice induces 

mammary ductal carcinomas with a mean latency of 52 weeks and an incidence of about 

80%. These tumors are hormone-dependent, metastatic, express both ER and PR, and are 

maintained by syngeneic transplants. The model has been further refined to include 

mammary carcinomas that evolve through different stages of hormone dependency, as 

well as several hormone-responsive cell lines. In this review, we describe the main 

features of this tumor model, highlighting the role of PR as a trigger of key signaling 

pathways mediating tumor growth. In addition, we discussthe relevance of this model in 

comparison with other currently used breast cancer models pointing out its advantages 

and limitations and how, this model may be suitable to unravel key questions in breast 

cancer.  

KEYWORDS: Antiprogestins, breast cancer, estrogen receptors, experimental model, 

hormone dependence, mammary carcinomas, medroxyprogesterone acetate, progestins, 

progesterone receptors.  

ABBREVIATIONS 

DHT, dihydrotestosterone; E2, 17-β-estradiol; ER, estrogen receptors; GCH, glandular 

cystic hyperplasia; HD, hormone-dependent; HI, hormone-independent; MNU, N-

methyl-N-nitrosourea; MPA, medroxyprogesterone acetate; Ovx, ovariectomized; PD, 
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progestin-dependent; Pg, progesterone; PI, progestin-independent; PR, progesterone 

receptors; R-PI, responsive progestin-independent; Sc, subcutaneous; Sx, 

sialoadenectomized; UR-PI: unresponsive progestin-independent. 

Page 4 of 58



 5 

INTRODUCTION 

 Breast cancer is the most frequent cancer in women (23% of all cancers), and it 

ranks second overall when both sexes are considered together (Parkin, et al. 2005). Most 

tumors are ductal infiltrating carcinomas expressing estrogen (ER) and progesterone 

receptors (PR). The majority of the genetically modified mouse breast cancer models as 

well as most spontaneous, chemically or mouse mammary tumor virus (MMTV)-induced 

mammary tumors in mice do not express ER and PR, or if they do (some MMTV 

models), they are pregnancy-dependent (Kordon 2008). One of the few exceptions is the 

MPA-breast cancer model. More than twenty years ago, we developed an experimental 

model in mice, in which medroxyprogesterone acetate (MPA) induced mammary 

carcinomas that expressed high levels ER and PR. The aim of this review is to assemble 

all the results of the last 20 years to better understand the possibilities and limitations of 

this model for furthering the understanding of breast cancer. 

At the beginning of the 80’s we became interested in the clinical observation that 

progestins may block growth in the benign but invasive fibroblastic proliferations known 

as desmoid tumors (Lanari 1983; Lanari, et al. 1978). In trying to find a mouse model 

where we could reproduce these results, we decided to investigate the inhibitory effects 

of progestins on foreign body tumorigenesis in BALB/c mice. In this specific type of 

tumorigenesis, the subcutaneous (sc) implantation of a glass cylinder in mice results in 

the formation of a thick fibrous capsule surrounding the cylinder. Within approximately 9 

months, fibrosarcomas would develop from that capsule, with an incidence of 79% 

(Lanari, et al. 1986b). To evaluate the effects of progestins on fibrosarcoma growth, we 

decided to use medroxyprogesterone acetate (MPA) rather than progesterone (Pg), 
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because MPA compound was easier to handle as it was available in a depot delivery form 

and it did not have to be injected on daily basis. We showed that in BALB/c mice treated 

with 40 mg MPA depot sc, every 2-3 months (4 doses), the number of foreign body 

fibrosarcomas that developed was significantly lower than in the untreated controls 

(Lanari et al. 1986b). Unexpectedly, the few MPA-treated female mice remaining at the 

end of the experiment developed mammary carcinomas. Two follow-up studies 

performed using exclusively female mice confirmed this carcinogenic effect, yielding 

multiple mammary carcinomas with a mean latency of one year and an average incidence 

of about 80% (Kordon, et al. 1994; Lanari, et al. 1986a). The fact that progestins could 

induce mammary neoplasias was rather counter-intuitive, as the consensus at that time 

(and for many years to come) was that estrogens were the proliferative/carcinogenic 

hormones, whereas Pg exerted mainly differentiating effects, thus counteracting the 

stimulatory properties of estrogens. However, there was already evidence that challenged 

this dogma. Pg or MPA administered in certain schedules of carcinogenesis protocols 

increased mammary tumor incidence in rats (Jabara 1967; Jabara, et al. 1973; Young 

1961), in mice carrying endogenous MMTV (Nie 1964; Sluyser and Van Nie 1974), and 

in cats and dogs (Concannon, et al. 1981; Hernandez, et al. 1975). In addition, Pg 

(Watson, et al. 1979) and MPA (Formelli, et al. 1985) stimulated the growth of the MXT 

transplantable mouse tumors.  

The carcinogenic effect reported for MPA, was also supported by later studies in 

rats, cats, dogs, and mice (Aldaz, et al. 1996; Benakanakere, et al. 2006; Goepfert, et al. 

2000; Misdorp 1991; Ohi and Yoshida 1992; Pazos, et al. 1992; Russo, et al. 1989). The 

findings of the WHI study (Women's Health 2002) and the Million Women Study (Beral 
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2003), showing increased breast cancer in estrogens-plus-progestin-treated women, 

further highlighted the risk associated with chronic progestin administration in humans. 

By 1999, a Working Group at the International Agency for Research on Cancer, World 

Health Organization (IARC) concluded that there was sufficient evidence in experimental 

animals for the carcinogenicity of MPA (limited evidence for carcinogenicity in dogs had 

been the previous evaluation in 1979 (IARC Working Group 1979, 1999), and moved 

MPA to Group 2B (possibly carcinogenic to humans).  In 2005 the IARC Working 

Group, on the basis of several studies that included postmenopausal therapy with 

estrogens plus MPA, considered that there was sufficient evidence in humans for 

carcinogenicity of combined estrogen-progestogen menopausal therapy in the breast, and 

moved it from group 2B to Group 1 (carcinogenic to humans) (IARC Working Group 

2007). Various reports have also highlighted the proliferative role of progestins on breast 

cancer and have been recently reviewed (Moore 2004; Aupperlee et al. 2005a; Kariagina 

et al. 2008). 

 

1) MPA-INDUCED CARCINOGENESIS 

Mammary carcinomas 

In the first study in which we reported the carcinogenic effects of MPA, the 

tumors were histologically classified as B adenocarcinomas according to Dunn´s 

classification (Sass and Dunn 1979). As most of the neoplasias, as well as the 

preneoplastic lesions, were similar to the human ductal counterparts, we re-classified all 

tumors following the histological criteria used for the human disease. Accordingly, 68% 

of the tumors were ductal carcinomas and the other 32% were lobular carcinomas. Using 
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a different protocol in which MPA was given as a sc 40 mg silastic pellet that was 

replaced by a 20 mg pellet six months later, MPA also proved to be carcinogenic, with an 

incidence of 58%, and, in this case, the ratio of ductal to lobular carcinomas was even 

higher, with 89% being ductal (Kordon et al. 1993). Ductal hyperplasias or carcinomas in 

situ were detected in most animals that did not develop carcinomas. In a few cases, 

lymph node and lung metastases were observed. Detached groups of tumor cells were 

also found within veins in different organs during histopathological evaluation of 

complete autopsies. All ductal mammary carcinomas expressed high levels of estrogen 

(ER) and progesterone receptors (PR), as well as prolactin receptors as evaluated by 

ligand binding techniques. Prolactin and EGF receptors were detectable in purified 

membrane fractions (Molinolo et al. 1987; Lanari et al. 1989). The low percentage of 

lobular carcinomas arising from MPA-treated animals, were very similar in morphology 

to those originating in other experimental models (Greaves 2007; IARC 1994; Seely and 

Boorman 1999), as well as to spontaneous carcinomas occasionally found in aging, 

multiparous BALB/c and other mice strains (Rehm and Liebelt 1996 and personal 

observation). Similarly to what happens in these models, the lobular tumors may express, 

when evaluated by binding techniques, low levels of ER and PR. However, and unlike 

what happens with the ductal carcinomas, the expression of ER and PR is lost, if 

transplanted subcutaneously, after a few passages (Kordon et al. 1994; Kordon, et al. 

1993). The nomenclature “lobular” was given to these tumors because their preneoplastic 

lesions mimicked those of human lobular carcinomas, which are characterized by an 

increase in the number of alveolar structures with progressive enlargement due to intra-

alveolar growth, as well as because they would occasionally infiltrate the stroma in linear 

Page 8 of 58



 9 

arrays of malignant cells, the “indian files” images also seen in human lobular cancer, but 

it is quite possible that they represent a different biological entity.  

Other effects of MPA 

 MPA-treatment was also associated with the early development of endometrial 

glandular cystic hyperplasias and/or deciduomas regardless of the presence of mammary 

carcinomas (Lanari et al. 1986a; Molinolo, et al. 1987). MPA also induced the 

differentiation of the granular convoluted tubules in the female´s submaxillary salivary 

glands (Kordon et al. 1994; Montero Girard, et al. 2007), leading to an increase in gland 

size. This had already been shown by Bullock et al. (Bullock, et al. 1975) as part of the 

androgenic effect of MPA. The hypertrophy was associated with an increase in EGF 

synthesis and an increase in serum EGF levels. BALB/c or C57BL/6 mice treated with 

MPA increased their body weight (Montero Girard et al. 2007; Pazos, et al. 1998). The 

administration of MPA to mice, 7 or 90 days before immunization with sheep red blood 

cells, significantly enhanced both primary and secondary antibody responses, without 

affecting delayed-type hypersensitivity (Vermeulen, et al. 2001). Additionally, we 

demonstrated that MPA decreased the incidence of leukemias, while it did not affect the 

incidence of lung adenomas in N-methyl-N-nitrosourea (MNU)-treated mice (Pazos, et 

al. 2001). 

MPA versus Progesterone 

Pg administration also induced mammary carcinomas when given as 40 mg 

pellets replaced by 20 mg pellets after six months, although the incidence was lower than 

that obtained with MPA (28% vs. 58%; (Kordon et al. 1993)). Only 28.5% of the Pg-

induced carcinomas were ductal; while the rest showed lobular differentiation, according 
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to the histological criteria mentioned above. In the uterus, Pg induced a microglandular 

hyperplasia; cystic lesions as well as deciduomas were consistently absent. 

Correlation between histology and hormone dependence 

To evaluate hormone dependence, MPA or Pg-induced carcinomas were 

transplanted into MPA-treated or untreated mice. The tumors that did not grow during the 

first two months in untreated animals were considered hormone dependent (HD), or more 

specifically progestin-dependent (PD), while those that did grow were designated 

hormone-independent (HI), or progestin-independent (PI). Out of 48 carcinomas in which 

histology and hormone dependence were recorded, 15 were lobular and HI, 32 were 

ductal and HD, and only one ductal tumor was HI. Histological evaluation was performed 

blinded to the hormone dependent status, and it proved to be a good predictor of hormone 

dependence in this model (Kordon et al. 1994; Kordon et al. 1993). 

Strain specificity 

To evaluate the strain-specificity for the carcinogenic effect of MPA, we tested 

C3H and C57BL/6 female mice using the standard protocol of MPA depot. The incidence 

of mammary carcinomas was significantly different between MPA-treated C3H mice and 

untreated controls (32% vs. 16%, p<0.05). C57BL/6 MPA-treated female mice did not 

develop mammary carcinomas. Moreover, MPA and Pg induced morphological changes 

in the mammary glands of C57BL/6 different from those seen in BALB/c mice (Montero 

Girard et al. 2007). Similar results have recently been shown by Auperlee (Aupperlee, et 

al. 2008). Along this line, we also demonstrated that the expression of ERα and of the A 

isoform of the PR (PR-A) was lower in virgin C57BL/6 mice than in BALB/c mice. 

Interestingly, when epithelial mammary cells from both strains were transplanted into 
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cleared mammary fat pads of the same immuno-compromised mouse, both 

morphological and receptor expression differences were abolished, thus reinforcing the 

role of the microenvironment in mediating epithelial hormone responsiveness. These 

results highlight the role of the altered expression of susceptibility/resistance genes in 

both, anomalous hormone responsiveness and breast cancer. 

Effects of sialoadenectomy or ovariectomy in MPA-induced carcinogenesis. 

The initial observation that female mice treated with MPA developed salivary 

glands hypertrophy led us to look for factors derived from such glands that may have 

played a role in mammary carcinogenesis. As previously stated, MPA induces, through 

androgenic actions, the differentiation of convoluted granular tubules, responsible for the 

synthesis and secretion of several growth factors, EGF among them (Bullock et al. 1975). 

We showed that in BALB/c mice sialoadenectomy lowered the incidence of MPA-

induced mammary carcinomas and that this was associated with diminished branching of 

the mammary glands (Molinolo, et al. 1996). Inoculation with EGF was able to restore 

and even increase branching (Molinolo, et al. 1998). Sialoadenectomy also affected the 

induction of MNU-induced carcinomas in MPA-treated mice (Molinolo et al. 1996). In 

the rat, EGF has also been demonstrated to participate in MNU-induced mammary 

carcinogenesis (Chou, et al. 1999). 

In ovariectomized (ovx) mice, the incidence of MPA-induced mammary 

carcinomas was significantly lower than in sham operated animals, and the same was true 

for MNU + MPA-induced mammary tumors (unpublished data). In ovx mice, the lack of 

estrogen levels high enough to induce the expression of physiologically relevant 

quantities of PR in the mammary gland, may explain the lesser carcinogenicity of MPA. 
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The fact that some tumors did develop, in spite of the absence of a significant 

estrogenicity, may be explained by the fact that MPA induces the synthesis and secretion 

of salivary glands’ EGF, a factor that has been shown to exert estrogenic effects (Bunone, 

et al. 1996). 

 

2) MPA-INDUCED MAMMARY CARCINOMAS: TUMOR TRANSPLANTS 

Hormone dependence 

Progestin-induced mammary carcinomas were sc transplanted into the inguinal 

flank of female BALB/c mice treated or non-treated with MPA. If the tumors only grew 

during the first two months in treated mice, they were considered progestin dependent 

(PD) or HD. 

HD growth: Ovariectomy delayed tumor growth in both MPA-treated and in 

untreated animals. In untreated ovx mice, the tumors grew very slowly after more than 

six months, which was probably due to adrenal hormones, since no growth was observed 

in ovx/adrenalectomized animals (Kordon, et al. 1990; Montecchia, et al. 1999a). 

When tumors were transplanted into ovx animals, Pg was able to stimulate HD 

growth nearly as well as MPA, while dihydrotestosterone (DHT) exerted a slight 

proliferative effect (Kordon et al. 1990). It has been demonstrated that the administration 

of 8-Cl-cAMP (Actis, et al. 1995), TNFα (Rivas, et al. 2008), or FGF-2 (Giulianelli, et al. 

2008) can also mimic the MPA effect in vivo. Although most of the HD tumors studied 

showed similar patterns of hormone dependency, the degree of this dependency varied 

among HD tumors. The tumors with the highest degree of hormone dependence would 

stop growing and even regress after hormone withdrawal (Simian, et al. 2006), while 
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others would stop growing or continue to grow very slowly. When transplanted into 

intact immuno-compromised mice, they showed the same MPA requirement (Kordon et 

al. 1994).  

HI growth: Occasionally, these HD tumors start to grow in untreated animals 

(Fig. 1). At this point, we suggest that this tumor has become HI. When this happens, the 

original HD tumor is recovered from frozen samples from early passages, while the HI 

tumor is maintained by syngeneic transplantation in untreated BALB/c mice. These HI 

tumors grow in both intact and ovx mice and some of them grow faster in non-ovx 

animals. 

Treatment responsiveness and tumor regression 

The administration of 17-β-estradiol (E2; 5 or 0.5mg silastic pellets) exerted a 

clear inhibitory effect in sc implanted tumors and in primary cell cultures (Lamb, et al. 

2003). It is interesting to note, as previously mentioned, that ovx in these animals is 

associated with a significant reduction of MPA carcinogenicity. It seems that 

physiological estrogen levels are required to induce PR expression in the mammary 

gland, which in turn may be necessary for tumor induction. However, in the established 

tumors, the sustained pharmacological serum concentrations achieved with the external 

E2 administration results in a potent inhibitory signal.  

Interestingly, and as opposed to what happens in most of the traditional mouse 

models, pregnancy inhibits R-PI tumor growth (Bustuoabad, et al. 2002). It is possible 

that the increased E2 levels observed in pregnancy might be counteracting the 

proliferative effect of Pg. The administration of three different antiprogestins, 

mifepristone (RU-486), onapristone (ZK 98299) or ZK 230211 (Hoffmann and Sommer 
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2005), in daily sc doses of 6-12 mg/kg body weight], also inhibited tumor growth or 

induced complete tumor regressions in most of the ductal HI variants growing in BALB/c  

(Kordon, et al. 1991; Montecchia et al. 1999a; Vanzulli, et al. 2002; Wargon, et al. 2008) 

or nude mice (unpublished).  The in vivo administration of PR antisense 

oligodeoxynucleotides (asPR) induced a transient inhibition of tumor growth supporting 

the key role of PR in tumor growth (Lamb, et al. 2005b). The antiandrogens 

hydroxyflutamide and flutamide had no effect (Montecchia et al. 1999a).  

Since some HI or PI variants did not respond to estrogens or antiprogestins we 

had to re-classify PI tumors as responsive (R-PI) and unresponsive (UR-PI) tumors 

(Helguero, et al. 2003b) (Table 1). The four UR-PI tumor variants may be considered as 

de novo resistant tumors and were resistant to both estrogens and antiprogestins (Figs. 1 

and 2). The specificity of the RU486 and MPA effects was assayed using different 

transplantable tumor models, such as a syngeneic lymphoma, LB, and a 

methylcholantrene-induced fibrosarcoma (Bustuoabad et al. 2002), and no significant 

differences between treated mice and controls were observed (unpublished). 

Tamoxifen (daily sc injections of 5mg/kg body weight) induced an inhibition of 

growth in R-PI and in HD tumors growing either in the presence or in the absence of 

MPA (Lamb et al. 2003). In this model, tamoxifen behaves as an estrogenic agonist, 

albeit with lower efficacy than estrogens. Raloxifene was only assayed in HD tumors; it 

had no effects in tumor growth in vivo (12.5 mg/kg daily doses). Doxorubicin, 

administered as pegylated liposomes (Doxopeg, Laboratorios Raffo, Argentina; 9 or 18 

mg/kg once a week), induced significant growth inhibition (unpublished data).  
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The effect of α(2)-adrenoceptor agonists and antagonists has also been studied in 

our model, as stress may be an important modulator of breast cancer growth. Clonidine 

significantly enhanced tumor growth while the antagonists yohimbine and rauwolscine, 

completely reversed the effects of clonidine. Rauwolscine alone diminished tumor 

growth significantly, behaving as a reverse agonist (Bruzzone, et al. 2008).  

Cytostasis, apoptosis (Vanzulli et al. 2002), or differentiation (Wargon et al. 

2008) are the hallmarks of tumor regression. The morphological changes of tissue 

remodeling were preceded by an early increase in p53, p21, and p27 expression. ER and 

PR expression were down-regulated 48 hr after the onset of tumor regression (Vanzulli et 

al. 2002; Vanzulli, et al. 2005). Concomitantly with the increase in apoptosis, there was 

also an increase in tissue remodeling (Simian et al. 2006). Interestingly, an increased 

expression of the CDK inhibitors p21 and p27 was also observed in primary cultures of 

C4-HD cells treated with TGFβ1 (Salatino, et al. 2001), suggesting that antiprogestins 

and estrogens may increase TGFβ activity. In T47D human breast cancer cells, 

antiprogestins have also been shown to induced an increase in TGFβ1 expression 

(Dannecker, et al. 1996). The chronology of events that lead to tumor regression, as well 

as the mechanisms by which E2 and antiprogestins converge to induce tumor regression, 

are now actively being studied in our laboratory. 

Estrogen and progesterone receptors 

Two different binding sites were observed for PR, one with a high capacity and 

with an affinity similar to the standard Kd described for PR (Kd: 9.2 nM; Q = 376 

fmol/mg protein) (Bayard, et al. 1977), and a second low capacity, high affinity binding 
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site with a Kd of 43 pM (Helguero, et al. 2003a). ER were also detected by binding 

techniques with a standard Kd of 1.5 nM. 

All the studied ductal tumors expressed ERα and ERβ as determined by western 

blotting. Both PR-A (83 kDa) and PR-B (115 kDa) were detected in HD and R-PI 

tumors. PR-A expression was always higher than PR-B (Helguero et al. 2003b; Wargon 

et al. 2008) and MPA down-regulated both PR isoforms (Helguero et al. 2003b). In UR-

PI tumor samples, PR-A expression was almost undetectable (Helguero et al. 2003b; 

Wargon et al. 2008). In addition, RNase protection assays did not reveal any differences 

in total mRNA between R-PI and UR-PI tumors. The western blot data were corroborated 

by immunohistochemistry, using antibodies specific for PR-B and PR-A (Aupperlee, et 

al. 2005; Wargon et al. 2008). In addition, in immunofluorescence studies we observed 

that both PR isoforms were co-expressed in the same cells. 

The UR-PI tumors may be considered as de novo or constitutively resistant 

tumors. Using selective pressure, we have also generated estrogen- and antiprogestin-

resistant tumors. We have shown that acquired estrogen resistance (Montecchia, et al. 

1999b) or acquired antiprogestin resistance (Wargon et al. 2008), are reversible 

phenomena. These acquired antiprogestin resistant variants had, as de novo resistant 

tumors, lower levels of PR-A than PR-B, suggesting that the PR isoform ratio is 

predictive of antiprogestin responsiveness (Wargon et al. 2008). 

Growth Factor receptors and ligands 

Similar levels of insulin-like growth factor 1 (IGF 1) and IGF 1 receptors, 

detected by RNase protection and by radio receptor assays, were found in HI and HD 

tumors in the presence or absence of MPA. IGF II, on the other hand, was up-regulated 
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by MPA and was highly expressed in HI tumors (Elizalde, et al. 1998). Man 6P/type II 

IGF receptors were down-regulated by MPA. The blockage of IGF I receptors by 

antisense oligodeoxynucleotides in vivo induced a delay in tumor growth that does not 

seem to be mediated by PR (Salatino, et al. 2004), suggesting that IGF 1 signaling is 

downstream of PR. 

The expression of heregulin (HRG), c-erbB2, and c-erbB3 was up-regulated by 

MPA in HD tumors, reaching levels similar to those observed in the HI tumor variants. c-

erbB4 expression that was not regulated by MPA, was similar in HD and HI tumors 

(Balana, et al. 2001; Balana, et al. 1999). Transforming growth factors (TGFβs) 1, 2, and 

3 were down-regulated by MPA in HD tumors, and their expression levels were lower in 

the HI variants. TGFβ 1R and 2 were present in HD ductal tumors, but only TGFβ 1R 

was significantly detected in the HI variants (Elizalde, et al. 1995; Viegas, et al. 1999). 

FGFR-2 was also highly expressed in HI tumors and up-regulated by MPA in the HD 

tumors (Giulianelli et al. 2008).  

All these results indicate that R-PI tumor variants are biologically similar to their 

respective parental tumors, reinforcing the hypothesis that in R-PI tumors, PR are 

activated by signals that mimic the progestin effect. We hypothesize that the increase in 

growth stimulatory factors and the decrease in inhibitory factors are intrinsic to the 

proliferative state of the tumors, and that they may act in concert downstream of PR, 

triggering mitotic and antiapoptotic signals (Fig. 2).  
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Trp53 mutations and cytogenetic analysis 

Five different HD tumors as well as some of their derived HI variants, and two 

lobular tumors were studied by PCR-SSCP and sequenced for Trp53 mutations. C4-HD, 

and most of its HI variants had the same point mutation, a C to G change at position 456 

in exon 5, representing a serine to arginine mutation at codon 152, within the DNA 

binding site (S152R; (Fabris, et al. 2005)). p53 is one of the most frequently mutated 

proteins in human cancer (Bourdon 2007). This transcription factor is a key regulator of 

cell cycle and apoptosis, which is activated in response to different stresses, genotoxic as 

well as not genotoxic, and modulates the transcription of several genes (p21, mdm2, 

GDD45, bax). p53 is also involved in DNA repair and centrosome stability. The untimely 

activation, inactivation or otherwise deregulation of any of these processes could 

arguably contribute to the development and maintenance of the malignant phenotype. 

Between 20 and 35% of human breast tumors present mutations in p53, occurring 

principally on the DNA binding domain (Lacroix, et al. 2006).  

The functionality of the C4-HD p53 mutations was assessed in studies using its 

derived MC4 cell lines, which carry the same mutations. The exposure of these cells to 

UVB does not induce an increase in p21. 

A nearly diploid chromosome number (2n = 40) was found in three of the five HD 

tumors, while numbers in the triploid to tetraploid range were observed in the other two 

HD tumors (Fabris et al. 2005). Some HI tumors were diploid, while most of them were 

aneuploid (8/12 tumors). The most frequent alterations found in HD and HI tumors were 

gains of chromosomes 3, 4, and 6, and losses of chromosomes 16 and X. Chromosomes 4 

and 7 were involved in translocations in three of the four tumor families studied. We 
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evaluated the evolution of the karyotype in the transition to hormone-independence and 

have demonstrated that hormone-independence may be acquired without changes in 

ploidy, suggesting that the increase in ploidy observed in many tumors is favored by 

successive transplantation. In our model, all diploid tumors responded to hormone 

treatment (E2 or antiprogestins), while aneuploid tumors were either responsive or not 

(Fabris et al. 2005).  

Mutations in the p53 gene are frequently associated to aneuploidy and 

chromosome instability. However, the fact that C4-HD tumor, unlike its HI counterparts, 

maintains a rather stable karyotype during in vivo passages may be indicating that other 

factors in concert with p53 may drive chromosome instability. 

 

Metastatic ability 

 All ductal carcinomas assayed gave rise to metastases in lymph nodes and lungs. 

Some of these tumors are specially suited for this type of studies as they develop 

metastases early, usually within two months of transplantation (Table 1). In general, 

lymph node metastases tend to be histologically more differentiated than the sc implant, a 

fact that is apparently unrelated to the selection of a specific cell subpopulation. When 

lymph nodes metastases are sc transplanted into syngeneic animals, the histology reverts 

to that of the originally primary tumor, displaying now the less differentiated phenotype, 

a fact that underscores once again the significant role of the microenvironment in 

regulating specific tumor features. These results are in agreement with recent findings 

showing that in humans, tumor cells in lymph node metastases have a CD24+, luminal 

phenotype (Shipitsin, et al. 2007). Hormone receptors are still expressed in both lymph 

node and lung metastases (Vanzulli et al. 2005), at levels similar to those of the primary 
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tumor, and antiprogestins and estrogens induced regression of the metastasis. This 

phenomenon is associated with increased cell differentiation, increased expression of p21 

and p27 and down regulation of ER and PR. (Vanzulli et al. 2005). It is worth pointing 

out that this is one of the very few models of lymph nodes metastases in murine 

mammary carcinomas (Vargo-Gogola and Rosen 2007).  
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IN VITRO STUDIES 

 

 Primary Cultures 

To obtain epithelial or fibroblastic enriched cultures, we use standard protocols 

(Pandis, et al. 1992), with slight modifications (Dran, et al. 1995). To test the effects of 

steroids or growth factors, cells are always grown with DMEM F12-HAM in the presence 

of 1-5% steroid-stripped serum. 

Epithelial cells : MPA- and Pg-stimulated cell proliferation at concentrations as low as 

10
-12 

M. DHT had no effect and dexamethasone was stimulatory at concentrations higher 

than 10 nM (Dran et al. 1995). E2 exerted an inhibitory effect even at low concentrations 

(Dran et al. 1995; Lamb et al. 2003). The anti-progestins, RU486 and ZK 98299 (Lamb, 

et al. 1999), exerted a striking inhibitory effect, while the antiandrogen hydroxyflutamide 

had no effect. The inhibitory effect of RU486 was observed at concentrations as low as 

10 nM. It has been reported that 10 nM RU486 does not bind to the glucocorticoid 

receptors in T47Dco cells (Horwitz 1985), thus supporting the role of PR in mediating 

cell growth. All effects were specific for C4-HD, since no changes were observed in 

primary cultures from a MPA-induced lobular carcinoma or in a spontaneous tumor 

which arose in a multiparous BALB/c mouse (Dran et al. 1995). The anti-estrogen 

Fulvestrant (ICI 182780) as well as the selective estrogen receptor modulators (SERMs), 

tamoxifen, and raloxifene, all inhibited cell proliferation. In the presence of MPA, 

fulvestrant and tamoxifen were inhibitory and raloxifene stimulated MPA-induced cell 

proliferation. As for the growth factors, EGF, IGF 1, or IGF II, they exerted almost no 

stimulatory effect when administered alone (Elizalde et al. 1998; Molinolo et al. 1998); 
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however, IGF 1 increased MPA-induced cell proliferation. On the other hand, FGFs and 

HRG exerted a stimulatory effect on MPA-treated or untreated cells (Balana et al. 1999; 

Lamb et al. 1999; Lanari, et al. 1997). TGFβ 1-3 were all inhibitory (Viegas et al. 1999). 

Interestingly, serum from MPA-treated ovx mice stimulated cell proliferation to levels 

higher than that from ovx mice, to which MPA was added exogenously, indicating that 

other serum factors in addition to MPA are participating in tumor growth (Lamb et al. 

1999). These results are in agreement with data reported in T47D-YB cells in which 

progestins, in addition to inducing cell proliferation, also stimulate the production of 

soluble factors that would be responsible for the sustained MAPK signaling leading to 

cell growth (Faivre and Lange 2007).  

 

Fibroblasts: Carcinoma associated fibroblasts (CAFs) were unresponsive to 

progestins, estrogens, or androgens. Anti-hormones at concentrations of 10
-6 

M induced 

minor inhibitory effects, except for RU486, which slightly stimulated cell proliferation. 

On the other hand, all growth factors tested, including the TGFβs, were stimulatory for 

fibroblasts (Lanari et al. 1997). CAF from HI tumors expressed higher levels of FGF-2 

and hepatocyte growth factor than CAFs from HD tumors (Giulianelli et al. 2008), 

leading to the idea that CAFs participate in HI growth (Fig. 2). 

 

CELL LINES 

We have developed several cell lines from C4-HD (Lanari, et al. 2001) and C7-2-

HI tumors (Efeyan, et al. 2004). The most interesting feature of these cell lines is that, 

unlike most murine mammary cancer cell lines, they retain ER and PR expression, 
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although at levels lower than those of the primary cultures from the same tumors (Aliaga, 

et al. 2004; Lanari et al. 2001). These cell lines showed different degrees of hormone 

responsiveness in vitro, and both estrogens and progestins were stimulatory. Anti-

progestins stimulated cell growth at low concentrations, but they inhibited cell 

proliferation at concentrations higher than 100 nM. Estrogens, unlike what happens in the 

parental tumors (both in vivo and in primary cultures), where they behave as inhibitory 

agents, may stimulate cell proliferation. Even though preliminary data of our laboratory 

suggests that this difference is not related to the expression of specific ERα or ERβ 

isoforms, we cannot rule out a role for the ERα splice variant ER 36 (Wang, et al. 2006).  

This variant has been demonstrated to be involved in cell proliferation, and the fact that it 

may be active only in the cell lines remains to be explored. The complete absence of the 

modulating influence of stromal ECM in the cell lines, as opposed to what happens in 

transplants may also help explain the differential estrogen response. Others have reported 

differences in hormone responsiveness between in vitro and in vivo settings; MCF-7 cells 

are stimulated in vitro by estrogens, whereas in vivo the presence of the hormone is an 

absolute requirement, as they simply do not grow without estrogen supplementation in 

immunocompromised animals (Shafie 1980). The reason of this difference remains still 

unknown. 

Two cell lines, a cloned epithelial tumor cell line, MC4-L4E, and a stromal non-

tumorigenic cell line, named MC4-L4F, were also developed from the parental tumor C4-

HD. Both express ERα and low levels of PR and show increased epithelial cell growth 

and an increase in PR expression when co-cultured under starvation conditions. These 
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characteristics provide an interesting tool to study stromal-parenchymal interactions 

(Lamb, et al. 2005a). 

3) PR, KEY PLAYER MEDIATING CELL PROLIFERATION 

In 1993, we found that RU486 was able to completely inhibit MPA-induced and 

steroid stripped serum-induced cell proliferation in HD cells, suggesting that PRs were 

playing a pivotal role in mediating this effect. At that time, the concepts of “ligand-

independent activation” and “crosstalk” were gaining acceptance and Edwards et al. 

(Edwards, et al. 1993) had suggested that PR could be activated by cAMP analogues. 

FGFs were the only ones of a series of growth factors tested that stimulated cell 

proliferation like MPA (Lamb et al. 1999). Using different anti-progestins and asPR we 

demonstrated that FGFs stimulated cell proliferation via the PR pathway (Lanari et al. 

1997).  Later, Labriola et al. used the same cells and HRG instead of FGFs to confirm a 

crosstalk between MAPK and PR in the MPA tumor model (Labriola, et al. 2003).  

All the results obtained using the HD tumors suggested that HI tumors might have 

ligand-independent activated PR (Lamb et al. 2005b; Montecchia et al. 1999a). Anti-

progestins induced complete tumor regressions and asPR (1 mg every 12 h for 5 days) 

were also inhibitory. We measured the Pg concentration in both HD and HI tumors and 

found no differences (01-0.5 ng/ml; RIA). The remaining unanswered question was what 

activated PR in HI tumors. Our working hypothesis, as depicted in Fig. 2, was that PD 

tumors were progestin- and PR-dependent while R-PI tumors were only PR-dependent. 

We hypothesized that stromal factors, such as FGF-2, might be responsible for activating 

PR. The fact that a) isolated epithelial cells from C4-HI cultures were as MPA- or FGF-2 

-dependent as epithelial cells from C4-HD cultures, and b) CAF from HI tumors were 

Page 24 of 58



 25 

much more stimulatory than CAF from HD tumors, led us to propose that factor/s 

secreted by CAF from HI tumors may be participating in the HI phenotype and FGF-2 

was a likely candidate. Indeed, FGF-2 does activate PR in C4-HI cells; a neutralizing 

FGF-2 antibody and the genetic or pharmacological blockade of FGFR-2 inhibit CAF-

induced epithelial cell proliferation and PR activation (Giulianelli et al. 2008). This in 

vitro data, together with the in vivo data demonstrating that FGF-2 stimulated C4-HD 

growth and that the FGFR inhibitor (PD 173074) decreased HI growth, underscores the 

role of CAF in HI tumor growth. 

 

4) ESTROGEN AND ANTIPROGESTIN IN BREAST CANCER TREATMENT 

Estrogens were extensively used for the treatment of breast cancer prior to 

tamoxifen (Carter, et al. 1977) and have been experimentally shown to induce tumor 

regression in the T61 human breast tumor transplant model in nude mice (Brunner, et al. 

1996). Cell lines overexpressing PKC alpha (Chisamore, et al. 2001; Lin, et al. 2006) and 

cells which become addicted to tamoxifen (Yao, et al. 2000) are inhibited by estrogens. 

The possibility of exploiting these findings in breast cancer treatment has been recently 

reviewed (Jordan 2008). 

Antiprogestins, on the other hand, have been shown to inhibit experimental 

mammary cancer. In breast cancer patients positive responses with RU486 have been 

reported (Klijn, et al. 1989). In this series, most side effects were related to the 

antiglucocorticoid activity of RU486, thus illustrating the need of pure antiprogestins 

(Klijn, et al. 2000).  Both, RU486 and ZK 98299, were also shown to inhibit DMBA and 

MNU-induced mammary carcinomas in rats, as well as the MXT mouse tumors (Michna, 
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et al. 1989a, b; Schneider, et al. 1989). Apoptosis and tumor differentiation were the 

mechanisms related with antiprogestin-induced tumor regression (Michna, et al. 1992a; 

Michna, et al. 1992b; Vollmer, et al. 1992). Differentiation was also induced in normal 

mammary glands (Li, et al. 1995). The T61 human xenograft model, inhibited with 

estrogens as mentioned above, was also inhibited by ZK 98299, although in this case E2 

priming was necessary to increase the expression of PR (Schneider, et al. 1992). The 

authors hypothesized that the inhibitory effect of ZK 98299 should involve other 

mechanisms in addition to its antiprogestin activity. In our model, antiprogestins only 

induced significant growth inhibition in PR-positive tumors. In other models using sc 

transplantable tumors, only slight differences were seen (Check, et al. 2007). It is 

possible, as NK have been shown to be modulated by progestins (Arruvito, et al. 2008), 

that an immune-mediated mechanism may contribute to their efficacy (Check et al. 

2007). Several groups have reported that the combination of antiprogestins and 

antiestrogens in breast cancer treatment was more efficacious than single drug treatments 

(Klijn et al. 2000). Experimentally, in MCF-7 cells transplanted in estrogen-treated nude 

mice, the simultaneous administration of tamoxifen and antiprogestins induced complete 

tumor inhibition. Monotherapy with tamoxifen or antiprogestins induced only a 

retardation of growth (el Etreby and Liang 1998; el Etreby, et al. 1998). Similarly, the 

Pg-induced stimulation of T47D xenotransplants was suppressed by RU486 (Liang, et al. 

2007). These authors highlighted the proangiogenic role of MPA in breast cancer growth 

(Liang and Hyder 2005). Noteworthy, Poole et al, have recently reported that RU486 

administration to BRCA1/p53-null female mice inhibits the generation of DMBA-

induced tumors as well as mammary gland branching (Poole, et al. 2006).  
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 A series of breast cancer clinical trials with different antiprogestins have already 

been reviewed (Klijn, et al. 1996; Klijn, et al. 1994; Shi, et al. 1994). Even though ZK 

98299 showed less antiglucocorticoid activity than RU486, it had to be withdrawn from 

the market because of liver toxicity (Klijn et al. 2000). Interestingly, when PR-B is 

activated by high levels of cAMP, RU486 acts as an agonist (Baulieu 1997; Horwitz 

1992), thus stimulating cell proliferation. Because of this, there has been certain 

resistance to the use of these agents for breast cancer treatment. The novel antiprogestin 

ZK 230211 has lower antiglucocorticoid activity and it does not induce agonistic effects 

in the presence of protein kinase A activators (Fuhrmann, et al. 2000). Accrual is now 

ongoing for breast cancer patients for a phase II clinical trial 

(http://clinicaltrials.gov/ct2/show/NCT00555919) using this drug. An even newer 

development is CDB-4124 and its putative metabolite CDB-2914, an antiprogestin with 

almost no antiglucocorticoid effects (Attardi, et al. 2004; Attardi, et al. 2002; Wiehle, et 

al. 2007). 

 

5) MPA-INDUCED MAMMARY CARCINOMAS VS. HUMAN BREAST 

CANCER AND OTHER BREAST CANCER MODELS. 

Current classifications of human breast cancers are based on their specific 

molecular profiles, rather than exclusively on their histological features (Hu, et al. 2006). 

The PI or HI tumors of the MPA breast cancer model share many features with the 

luminal breast cancers: a) most tumors are of ductal histology, b) they are invasive and 

metastatic; c) they are hormone responsive; d) express ER and PR; and e) respond to 

chemotherapy (Table 2). Some of them respond to estrogens, tamoxifen, and 

antiprogestins. Similarly, some human breast cancers are responsive to tamoxifen and to 
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estrogens. Interestingly, 30% of established human breast cancer cell lines are ER-

positive and they are stimulated by E2. Several cell lines derived from the murine tumors 

of this model are also stimulated by E2.  

Mouse breast cancer models expressing steroid receptors: The MXT carcinoma 

(Watson et al. 1979) was one of the earliest ER(+), PR(+) described tumors. This tumor 

model has been used for the evaluating of the effects of chemotherapeutic agents and 

different hormones as well as to test the effects of antiprogestins (Darro, et al. 2005). 

Other strains such as GR or BALB/c, carrying the Mouse Mammary Tumor Virus 

(MMTV), develop pregnancy-dependent tumors which regress after parturition (Kordon 

2008). Tumors of these models have a pattern of hormone-responsiveness completely 

different than most of the human breast carcinomas and they have been useful to study 

MMTV activated oncogenes (Kordon 2008). The M05 BALB/c mouse tumor (Simian, et 

al. 2008) arising spontaneously in a virgin female mouse, looks promising for hormonal 

studies, as tumor growth is inhibited with tamoxifen. The fact that this is only one tumor, 

rather than a set of neoplastic proliferations, limits data validation. 

Xenografts in immunodeficient animals. These are the most common models used to 

evaluate hormone related breast cancer and most of the studies come from a rather 

limited set of cell lines inoculated in nude or SCID mice, including MCF-7, T47D, ZR-

75. None of these cell lines originate metastasis in vivo unless genetically modified, 

except for the recently developed IBH-4, IBH-6 and IBH-7 (Bruzzone, et al. 2009). The 

fact that the human cells are growing in an immunodeficient mouse environment 

constitute obvious shortcomings of these approaches. New models have been developed 

in which human fibroblasts were transplanted together with the neoplastic cells, thus 
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creating a humanized environment, although the possible role of the immune system has 

not been yet properly addressed (Proia and Kuperwasser 2006).  

 

Genetic engineered mouse models (GEM). As recently reviewed (Allred and Medina 

2008; Vargo-Gogola and Rosen 2007), there are no mouse engineered models in which 

the induced mammary tumors give rise to metastasis either in lymph node, brain or bone. 

In addition, there are no consistent reports on metastatic carcinomas responding to 

hormone therapy, even though models are available in which hyperplastic growths retain 

ER and PR expression, such as a fraction of tumors arising in mammary glands from p53 

null mice transplanted into in a BALB/c background. In other models, epithelial cells are 

genetically manipulated to express ERα, transformed in vitro and then transplanted into 

mice, resulting in metastatic estrogen responsive tumors (Duss, et al. 2007). 

 

6) SUMMARY AND FUTURE DIRECTIONS 

Our studies underscore the carcinogenic and proliferative effects of MPA in the 

BALB/c mammary gland. They also indicate that the effects of MPA on the mammary 

gland are different from those of Pg. Both compounds have different carcinogenic effects, 

although both substances are able to stimulate the growth of already established tumors. 

Using this model, we have also given a hierarchical role to the PR as mediators of tumor 

growth. Progestin-independent growth was inhibited by antiprogestins and asPR 

suggesting that these tumors, although progestin-independent, were still PR dependent for 

their growth. The essential role of PR on the mammary gland became evident when 

Lydon et al. developed the PR knockout mouse and showed absence of mammary gland 
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development or mammary tumor development in the absence of PR (Lydon, et al. 1999). 

The current therapy for endocrine-related breast cancer involves targeting ER or its 

ligands (Jordan and Brodie 2007). Since an important role for ER is the induction of PR 

expression, it seems reasonable to expect that anti-progestin therapy may be a beneficial 

treatment approach for endocrine-responsive breast cancer. It seems possible that the use 

of therapies aimed to block the PR, either together or alternated with anti-estrogens or 

aromatase inhibitors may delay the onset of hormone resistance. An imbalance of PR 

isoform expression has been reported in breast cancers (Mote, et al. 2002) and tumors 

with higher PR-A/PR-B ratios are those which have been shown to exhibit a poorer 

response to tamoxifen treatment (Hopp, et al. 2004). Interestingly, in the MPA-induced 

tumor model, tumors with these features would respond to antiprogestins, and it may also 

be possible to identify similar subpopulations of human cancers.  

MPA breast cancer model has limitations and advantages. As a limitation 

common to other transplant models, neoplastic cells are injected into otherwise normal 

organisms in which the predisposing risk factors are absent. Also, the fact that most of 

the GEM had been developed in backgrounds other than BALB/c, limits the possible use 

of these tumors in genetically modified backgrounds. 

Probably the most important advantages is that the model is established in 

immunocompetent animals and that the ductal mammary carcinomas originated express 

ER and PR, are hormone-responsive, and metastasize to lymph nodes and lungs. Even 

though we have not yet used this model for intracardiac or intrafemoral tumor cells 

injections, this possibility remains to be exploited.  
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Established and highly characterized cell lines of human origin such as MCF-7, 

T47D, MDA-231 and others, have become a standard tool in the study of different 

aspects of breast cancer. Each represent, however, what is found in a single individual, 

and recreating specific aspects such as hormone responsiveness/resistance usually require 

complex gene manipulations. We believe that the MPA model, with the ample array of 

carcinomas of different biological behavior, may better represent through their natural 

genetic drift, the interindividual variations and the heterogeneity found among tumors. is 

It is also worth pointing that, regardless of this natural genetic drift and the acquisition by 

some of the tumors of specific mutations, hormone responsiveness remains closely 

similar in the whole family of parental tumors; most of them are still strongly hormone 

responsive. This allows the testing different approaches to understand the acquisition of 

hormone independence and hormone resistance, one of the most challenging areas of 

breast cancer research. 

The possibility to work with primary cultures in 2D and 3D, separating CAF from 

epithelial cells or co-culturing both populations has allowed us to investigate the role of 

tumor stroma on the acquisition of hormone independence. In addition, undergoing 

studies profiling stroma from different HD and HI tumors growing in vivo will provide 

further information to understand the role of stroma in hormone independence and 

resistance. It has recently been hypothesized that progestins may induce the selection of 

stem cell in patients with breast cancer (Horwitz and Sartorius 2008), which may open up 

the possibility of investigating this hypothesis in the MPA-induced breast cancer model, 

and to investigate whether we have targeted the stem cell population in tumors that have 

experienced complete clinical regression. 
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Standard concepts on general carcinogenesis fail to fit the natural history of 

hormone-induced mammary carcinomas, as effective proof of a specific mutagenic 

initiation hit is still lacking. Moreover, current knowledge points to the fact that the 

progression of these cancers seems to be driven by epigenetic events and signaling 

pathway cross-talks, rather than by specific genetic changes. A revisit to the general 

cancer paradigm is in this case, long overdue. The MPA-induced mammary carcinomas 

may be the ideal environment in which to test these highly relevant questions, as it 

represents a hormone-induced, hormone-driven cancer that progresses strongly associated 

with the EGF signaling axis in the preneoplastic stages, becomes addicted to the PR 

pathway, and closely interacts with other relevant paths such as that of the FGFR.  
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Figure Legends: 

Figure 1: Tumor transplants and generation of tumors. The continuous administration 

of MPA to female BALB/c mice induces HD mammary carcinomas, which are 

maintained by syngeneic transplants into MPA-treated mice. Two mice are left untreated 

to control hormone-dependence. Occasionally, tumors start to grow in untreated mice 

and, as a result, a HI tumor is established. These tumors grow even in the absence of 

MPA. Some of those HI tumors are inhibited by the treatment with antiprogestins 

(RU486), estrogens (E2) or tamoxifen (TAM; responsive HI: R-PI)), and other HI tumors 

are unresponsive to the hormonal treatment (unresponsive HI tumors: UR-PI).  

 

Figure 2: Working hypothesis. PR play a key role regulating tumor growth. In HD (PD) 

carcinomas, MPA or Pg interact with PR inducing a proliferative state characterized by 

the presence of high levels of stimulating growth factors such as IGF II and HRG and low 

levels of inhibitory factors such as TGFβs. If tumors are able to grow without exogenous 

hormone supply they are considered HI or PI. In these tumors we have hypothesized that 

paracrine stromal factors mimic Pg signaling, and therefore, the tumors have a growth 

pattern similar to PD tumors growing with MPA. FGF-2 is one of the stromal paracrine 

growth factors inducing PR activation through binding with FGFR-2, its cognate 

receptor, in the epithelial cells. Therefore, the blockage of PR will induce effects similar 

to progestin removal in the PD tumors: cytostasis and apoptosis. These tumors are 

responsive progestin-independent tumors (R-PI) and, as PD tumors, they have higher 

expression of PR-A than PR-B. However, in some PI tumors, PR inhibition with 

antiprogestins does not inhibit tumor growth (UR-PI). These tumors still express PR but 
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they have a different pattern of isoform expression, as observed by western blots: higher 

expression of PR B than PR A. 
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Figure 1: Tumor transplants and generation of tumors  
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Figure 2: Working hypothesis  
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Table 1, Lanari et al.  

 

Table 1: MPA-induced mammary carcinomas 

 

Hormone Independent 

Unresponsive 
Hormone 

Dependent Responsive 
Acquired De Novo 

C4-HI C4-HIR* C4-2-HI C4-HD 

� 

CC4-HD# 

CC4-HI 

CC4-3-HI 
  

C7-HD C7-2-HI* BET C7-HI* 

32-HD 32-2-HI  32-HI 

48-HD 48-HI   

59-HD 59-2-HI 59-2-HIR 59-HI 

 

*: highly metastatic in axillary lymph nodes and lungs 

#: Primary cultures of C4-HD were inoculated sc and maintained by serial transplantation  
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Table 2, Lanari et al.  

 

Table 2: Comparison betweenMPA-induced mammary carcinomas and human breast 

cancer 

 

MPA-induced mammary 

carcinomas 
Human breast cancer 

Ductal carcinomas 
78 % are ductal carcinomas (Glass et al. 

2007)  

Metastasis in lymph nodes and lung Metastasis in lymph nodes and bone 

ER(+), PR(+) 70% are ER(+), PR(+) 

c-erbB2 (+) 20-25 % are c-erbB2(+) 

p53 mutations in 20% of the tumors p53 mutations in 20% of the tumors 

• Responsive to endocrine treatment 

• Clinical progression to hormone 

resistance  

• Responsive to endocrine treatment 

• Clinical progression to hormone 

resistance 

May regress completely by estrogen 

treatment 

Estrogens have been successfully used for 

treatment in a group of patients 

May be responsive to tamoxifen 

treatment 
Different degrees of tamoxifen sensitivity 

May regress completely by antiprogestin 

treatment 

There has been some responsiveness to 

antiprogestin treatment in few trials 

 Responsive to doxorubicin  Responsive to doxorubicin 

Cell lines are stimulated by E2 
30% of the derived cell lines are 

stimulated by E2 

Progestins may stimulate tumor growth 
Progestins may inhibit or stimulate tumor 

growth. 
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