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ABSTRACT 

 

The TPM domain constitutes a family of recently characterized protein domains that are 

present in most living organisms. Although some progress has been made in understanding 

the cellular role of TPM-containing proteins, the relationship between structure and function 

it is not clear yet. We have recently solved the solution and crystal structure of one TPM 

domain (BA42) from the Antarctic bacterium Bizionia argentinensis. In this work we 

demonstrate that BA42 has phosphoric-monoester hydrolase activity. The activity of BA42 is 

strictly dependent on the binding of divalent metals and
 
retains nearly 70% of the maximum 

at 4° C, a typical characteristic of cold adapted enzymes. From HSQC, 
15

N relaxation 

measurements and molecular dynamics studies we determine that the flexibility of the 

crossing loops was associated to the protein activity. Thermal unfolding experiments showed 

that the local increment in flexibility of Mg
2+

-bound BA42, when compared with Ca
2+

-bound 

BA42, is associated to a decrease in global protein stability. Finally, through mutagenesis 

experiments we unambiguously demonstrate that the region comprising the metal binding site 

participates in the catalytic mechanism. The results shown here contribute to the 
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understanding of the relationship between structure and function of this newly family of TPM 

domains providing important cues on the regulatory role of Mg
2+

 and Ca
2+

 and the molecular 

mechanism underlying enzyme activity at low temperatures.  

 

INTRODUCTION 

 

The TPM domains (Pfam PF04536) represent a super family of poorly characterized 

protein domains widely distributed in eukarya and eubacteria that have been implicated in 

diverse cellular processes such as photosynthesis and synaptic transmission [1, 2]. The 

TPM domain family, previously referred to as "DUF477" and "Repair_PSII", has received its 

name from the first three proteins studied; TLP18.3, Psb32 and MOLO-1 [2, 3]. 

In recent years, the structure of four TPM domains present in several proteins have been 

determined (CG2496 from Corynebacterium glutamicum [PDB code 2KPT], PG0361 from 

Porphyromonas gingivalis [PDB code 2KW7], BA42 from Bizionia argentinensis [PDB 

codes 2MPB and 4OA3] [4] and AtTPL18.3 from Arabidopsis thaliana (PDB code 3PTJ) 

[2]). These structures, despite sharing a very low sequence identity (less than 15%), present a 

similar  “sandwich” conformation, not previously found in other protein domains. The 

function of CG2496, PG0361 and BA42 remains unknown, whereas AtTLP18.3 was 

classified as a thylakoid acid phosphatase [2], and was proposed to provide partial protection 

for the PSII complex to resist photoinhibition under fluctuating high-light conditions [5]. 

In addition to these four TPM family members with known structure, other TPM-

containing proteins have been functionally characterized so far. MOLO-1 was identified as a 

positive regulator of levamisole-sensitive acetylcholine receptors at the Caenorhabditis 

elegans neuromuscular junction [6]. The Psb32 protein from Synechosystis sp., similar to 

AtTLP18.3, protects photosystem II from photodamage and accelerates its repair. Very 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

recently, a functional analysis of the TPM-containing protein Rv2345 from the pathogenic 

bacteria Mycobacterium tuberculosis [7] characterized its phosphatase and ATPase activities. 

Finally, it has been shown that the TPM domain of the CG2496 protein from 

Corynebacterium glutamicum interacts with methiothepin, a potential lead compound for 

antibiotics [8]. 

Although some progress has been made in understanding the cellular role of TPM-

containing proteins, it is not yet clear the relationship between structure and function of this 

family of domains. Indeed, there is only one TPM family member with known structure 

functionally characterized to date [2]. 

In this context, we have recently solved the solution and crystal structure of BA42, a 

protein from the Antarctic bacterium Bizionia argentinensis [4]. BA42 is the first structure of 

a member of the PF04536 family comprised of a stand-alone TPM domain. The structure 

reveals a new topological variant of the four -strands constituting the central -sheet of the 

 architecture and a double metal binding site stabilizing a pair of crossing loops, not 

observed in previous structures of proteins belonging to this family. The metal-bound form of 

BA42 is characterized by a notable rigidity, with the exception of the first seven residues. 

Without the metal, BA42 undergoes a transition to a more flexible structure, presenting a long 

C-terminal tail of 17 residues largely disordered [4]. Furthermore, BA42 lacks both an N-

terminal signal sequence and a transmembrane region, therefore, in contrast to the other 

characterized TPM family members, it is most probably localized in the cytoplasm. 

In order to characterize the functional role of BA42 and based on the previously 

characterized TPM domains [2, 7], we tested the possible phosphatase activity of this protein. 

Here we demonstrate that BA42 has in vitro phosphoric-monoester hydrolase activity (EC 

3.1.3), similar to others TPM members. Further characterization indicated that the activity of 

BA42 is strictly dependent on the presence of divalent cations, being Mg
2+

 the most efficient 
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to increase the enzyme activity. The protein retained nearly 70% of maximum activity at 4° 

C, a typical characteristic of cold adapted enzymes. From HSQC, 
15

N relaxation 

measurements and molecular dynamics simulations we determined that the binding of Mg
2+

 

to BA42, when compared with Ca
2+

, induces local changes in the metal binding site and on 

residues of the crossing loops. Although the global structure of Mg
2+

-bound BA42 seemed to 

be similar to the Ca
2+

-bound BA42, an increased flexibility was observed in the region of the 

crossing loops indicating that changes in local flexibility are related to enzymatic activity, as 

observed for other cold-adapted enzymes [9, 10]. Thermal unfolding experiments showed that 

the increased flexibility of Mg
2+

-bound BA42 correlates with a reduction of protein stability. 

Furthermore, the results obtained from mutagenesis experiments were in line with our 

previous results and allowed the identification of a region encompassing the metal binding 

site that participate in the catalytic reaction. These results characterize for the first time at 

atomic level the function of a TPM-containing protein and strongly support that this domain 

family has phosphatase activity. Moreover, the activity of BA42 is regulated by Mg
2+

 and 

Ca
2+

 and the increased flexibility of the crossing loops induced by Mg
2+

 emerged as an 

important feature that may explain the catalytic mechanism underlying enzymatic activity at 

low temperatures.  

 

RESULTS 

 

Phosphoric hydrolase activity of BA42 

Previous studies showed that TPM domains of Rv2345 and AtTLP18.3 are capable of 

removing phosphate groups from different substrates [2, 7]. Although the structure of the 

TPM domain of Rv2345 is currently unknown, a pairwise sequence alignment between this 

domain and the TPM domain of AtTLP18.3 [7] showed conserved regions of key residues 
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proposed to be involved in substrate binding. In line with this, a pairwise sequence alignment 

between BA42 and AtTLP18.3 (15% of sequence identity) showed conserved amino acids 

residues reported to be essential for substrate binding in the acid phosphatase of A. thaliana 

(Figure 1A). Val101, Asp102 and Lys112 have been shown to interact with the substrate in 

the crystalline structure of the AtTLP18.3-Ser complex [2]. The alignment showed the 

conservation of Val17 and Asp18 in the primary sequence of BA42. However, we were 

unable to find a conserved residue in BA42 corresponding to Lys112 in AtTLP18.3. In this 

respect it is worth mentioning that Lys112 has been shown to be exclusively conserved in 

land plants [2].  

These previous observations led us to the hypothesis that BA42 might also have a role as 

phosphoric-monoester hydrolase. However, despite this sequence conservation, a structural 

alignment between BA42 and AtTLP18.3 clearly showed that conserved residues are located 

in different secondary structure elements of the TPM fold (Figure 1C). Although the substrate 

binding residues in AtTLP18.3 are positioned at the -sheet I, the conserved hypothetical 

substrate binding residues in BA42 are placed in -helix I. In this sense, the spatial 

arrangement of these residues in the structure of BA42 is significantly different to the spatial 

configuration observed in the substrate binding site of AtTLP18.3. In consequence, this 

feature hinders the possibility that both domains could share the same substrate binding site. 

Moreover, as mentioned before, BA42 has a distinctive folding topology that introduces a 

remarkable conformational difference in the region encompassing the substrate and the metal 

binding sites in the structure of AtTLP18.3 (Figure 1C) [4]. In this regard, from a detailed 

inspection of the proteins classified in the PF04536 family we noted that most members 

(polypeptides with a size ranging between 270 to 290 amino acids) have a similar topology 

characterized by the presence of an N-terminal signal sequence followed by the TPM domain, 

a transmembrane domain, and a C-terminal low complexity region with variable length. This 
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group includes AtTLP18.3, and other TPM-containing proteins characterized so far. In 

contrast, as mentioned above, BA42 is a stand-alone TPM domain with a distinctive topology 

and predicted to be cytoplasmic. Relevant to these observations, from a sequence similarity 

search using the BLASTp program we detected that proteins homologous to BA42 (i.e. stand-

alone TPM domains) are almost exclusively conserved within the phylum Bacteroidetes. 

Interesting, a multiple alignment of homologous BA42 sequences showed no strict 

conservation of the VDK triad corresponding to the substrate binding site in AtTLP18.3 

(Figure 1B). However, a remarkable conservation was observed for residues involved in the 

metal binding site, the down crossing loop and the -sheet I in BA42 (Figure 1B). 

Despite the fact that BA42 may lack an active site homologous to AtTLP18.3, the 

hypothesis that BA42 might acts as a phosphoric hydrolase could not be ruled out. First, 

similar to AtTLP18.3, BA42 contains metals in its structure, being a characteristic feature of 

other phosphoric-monoester hydrolases [11, 12]. Second, BA42 belongs to a psychrophilic 

organism and therefore may have evolved an alternative active site with dynamics and 

structural characteristics suitable for cold catalysis. Finally, through a structural comparison 

with DALI [13] and MATRAS [14] programs, we found that BA42 shared high structural 

similarity with hydrolases, as previously observed for AtTLP18.3 [2]. 

In this context, we analyzed the phosphoric-monoester hydrolase activity (hereafter 

referred to as phosphatase) of BA42 by use of the general substrates p-nitrophenyl phosphate 

(pNPP) and phosphoserine (pSer) at 25 ºC. Initial results indicated that BA42 contained 

phosphatase activity (Figure 2A). In these assays we used the TEV protease as a control [15], 

a protein lacking phosphatase activity. BA42 showed enzymatic activity with both substrates, 

while being more efficient to hydrolyze the pSer. Interestingly, the enzymatic activity of 

BA42 was dramatically inhibited after pretreatment with EDTA. Consequently, to 

characterize the effect of bivalent metals on the phosphatase activity we performed the assay 
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with the metal-free BA42 in the presence of several divalent ions (Mg
2+

, Ca
2+

, Mn
2+

 and 

Zn
2+

) using pSer as substrate (Figure 2B). When incubated with Mg
2+

 the activity of BA42 

was significantly increased (up to five-fold) in comparison to the other divalent metal ions 

assayed.  

We determined the optimal enzymatic conditions of Mg
2+

-bound BA42 for pSer. The 

highest activity was observed at pH 7.0 and around 20-22 ºC (Figure 3A and 3B). Of note, as 

observed for psychrophilic enzymes [16], the protein retained nearly 70% of maximum 

activity at 4° C. Kinetics assay of BA42 were performed for pSer and the results were best 

fitted to an allosteric sigmoidal (Figure 3C). The apparent substrate-binding activity affinity 

(Km) was 5.631.82 mM, the catalytic velocity (Vmax) was 3.951.26 nmol min
-1

 mg
-1

 and 

the kcat was 0.067 0.002 min
-1

 at the optimal condition of 20-22 °C and pH 7.0. 

 

The binding of Mg
2+

 to BA42 is associated with an increase in enzyme activity 

 We have previously showed that it is possible to follow conformational changes 

associated to Ca
2+

 binding of metal-free BA42 by inspection of resonances in the range of 0.5 

to -1.5 ppm in the 1D 
1
H NMR spectrum [4]. Accordingly, we used the same procedure to 

monitor conformational changes of metal-free BA42 upon binding of other bivalent metals 

(Figure 4A). All different metals tested were able to bind BA42 and displayed a similar 

behavior of the 1D 
1
H NMR spectrum as previously observed for Ca

2+
. Hence, we 

hypothesized that binding of divalent metals results in a global conformational change similar 

to that reported for Ca
2+

. Surprisingly, unlike the other cations tested, Mg
2+

 presented a 

differential behavior. The dissociation constant for this bivalent ion was 87 M whereas the 

other metals showed dissociation constants of 48 M in average. But most important, the 

maximum activity in the presence of Mg
2+

 was on average five-fold greater than with Ca
2+

, 
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Mn
2+

 or Zn
2+

 (Figure 4B). The observed behavior when the enzyme was titrated with Mg
2+

 

was better appreciated by plotting the activity and the conformational change together in the 

same graph (Figure 4C). It was very clear that the binding of Mg
2+

, followed by monitoring 

the conformational change from metal-free to Mg
2+

-bound BA42, was associated with an 

increase in enzyme activity. In this regard, it is interesting to note that even though all 

bivalent metals tested were able to induce the conformational change of the metal-free BA42, 

Mg
2+

 was the most efficient in increasing the enzymatic activity. This suggests a strict 

specificity in the type of metal in the catalytic mechanism.  

 

Mg
2+

-bound BA42 exhibits local conformational changes with respect to Ca
2+

-bound 

BA42 

We recently proved that Ca
2+

 binding is crucial for stabilization of the BA42 structure, 

involving the closure of the C-terminal segment anchored to the  region, generating a 

rigid conformation [4]. To investigate whether Mg
2+

 induced the same conformational 

change, we analyzed the 
1
H-

15
N HSQC spectra of metal-bound BA42 with Ca

2+
 and Mg

2+ 

(Figure 5). Interestingly, although both spectra showed a similar pattern of cross-peaks with 

minor variations, a group of cross-peaks in the Mg
2+

-bound BA42 HSQC spectrum could not 

be detected (Figure 5). This was the case of amide signals of residues 21, 26, 28, 31, adjacent 

to the metal binding site, and residues 131-137, comprising the up crossing loop in the Ca
2+

-

bound BA42 (Figure 5). The disappearance of these signals could be attributed to: i) an 

increased flexibility associated to slow or intermediate conformational motions, ii) a higher 

solvent exposition or iii) Large chemical shift differences in the Ca
2+

 and Mg
2+

-bound states 

that make it difficult to match the corresponding resonances, hence the apparent 

disappearance. However, no resonances in the Mg
2+

-bound state could be assigned to the 
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missing resonances, ruling out this option. Furthermore, we were unable to detect the 

appearance of these amide signals in HSQC spectra performed at low pH (up to the limit of 

precipitation of the protein), thus discarding the disappearance of the signals due to a greater 

exchange with the solvent. Therefore, we hypothesized that binding of Mg
2+

 destabilizes the 

conformation of the crossing loops. 

To further analyze the differences between Mg
2+

-bound and Ca
2+

-bound BA42 HSQCs, 

we performed a chemical shift perturbation (CSP) study (Figure 6A). We found major 

changes in the amide signals of residues that directly interact with the metals and others close 

to the binding site, specifically in the down crossing loop and the loop that connects the β-

sheet B with the α-helix II (Figure 6E and 6F). Residues 22, 24, 25, 27, 30, 59, 60, 61 and 

140 showed CSP values above the threshold line. 

Taken together, these results clearly indicated that the binding of Mg
2+

 to BA42 (in place 

of Ca
2+

) induced local changes in the metal binding site and residues of the crossing loops. 

Although the global structure of Mg
2+

-bound BA42 seemed to be similar to the Ca
2+

-bound 

BA42, the increased flexibility of the crossing loops induced by Mg
2+

 emerged as an 

important feature that may probably explain the enhancement of the phosphatase activity. 

 

Mg
2+

-bound BA42 presents an increment of slow internal motions in the down crossing 

loop and the C-terminal region 

To study the effect of Mg
2+

 on the overall backbone dynamics of BA42 at a residue level, 

we performed 
15

N relaxation measurements on 
15

N- metal-bound-BA42 with Ca
2+

 and Mg
2+

. 

As reported previously [4], Ca
2+

-bound BA42 exhibits rather uniform values of relaxation 

rates along the protein sequence, a sign of a compact globular monomeric protein. Indeed, the 

average T1/T2 value is 8.0 ± 0.2 ns at 28º C. The Mg
2+

-bound BA42 T1/T2  ratios were very 
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similar to those Ca
2+

-bound BA42, including anisotropic tumbling effects as a result of the 

shape of the molecule [4] (Figure 6B). However, some residues in Mg
2+

-bound BA42 

displayed relative high T1/T2 ratios and a shorter T2. They were those in the D22-E30 region, 

comprising the down crossing loop, and N140-K144, belonging to the C-terminal region, 

suggesting the presence of low-frequency motions (s-ms), timescales often associated with 

conformational exchange. In addition, the loop that connects the β-sheet B with the α-helix II, 

that displayed significant variations in the CSP experiment, showed  minor changes in 

dynamics between Mg
2+

-bound and Ca
2+

-bound BA42. 

On the other hand, the hnNOE values obtained for Mg
2+

-bound BA42 were almost 

identical to the values obtained for Ca
2+

-bound BA42, thus indicating that no new fast 

internal motions (ps-ns) appeared in the protein bound to Mg
2+

 (Figure 6C). Therefore, in line 

with our previous results, the backbone dynamics experiments clearly indicated that Mg
2+

-

bound BA42, when compared with Ca
2+

-bound BA42, presented increased flexibility (in the 

slow timescale, s-ms) in the region comprising the down crossing loop and the C-terminal 

region. 

Additionally, to further studying differences in the dynamics of BA42 with Ca
2+

 and 

Mg
2+

, we performed all-atom Molecular Dynamics (MD) in explicit solvent and in the 

presence of one of the two ions in both coordination sites. MD simulations were converged, 

as shown by RMSD vs time plots (Figure 6G). When analyzing fluctuations by residue, we 

observed a significant increase in the C-terminal region of the Mg
2+

-bound BA42, as can be 

seen in the RMSF plot (Figure 6D), and in agreement with our previous NMR experiments. 
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Mg
2+

-bound BA42 displays changes in thermal stability with respect to Ca
2+

-bound and 

metal-free BA42 

We have previously shown the strong difference in the conformational stability between 

metal-free and Ca
2+

-bound BA42 [4]. In order to assess whether the conformational change 

induced by the binding of Mg
2+

 affected the stability of the protein, we carried out thermal 

denaturation experiments followed by circular dichroism (CD). In a first experiment, we 

found that the far-UV spectra of Ca
2+

-bound and Mg
2+

-bound BA42 were almost identical to 

each other, but slightly different to the spectrum of EDTA-treated (metal-free) BA42. The 

three spectra were dominated by an α-helix content with two minima at 209 nm and 223 nm 

(Figure 7A). We next investigated the thermal unfolding of metal-free, Ca
2+

-bound and Mg
2+

-

bound BA42 by recording the molar ellipticity at 222 nm at different temperatures (Figure 

7B). All the three variants tested showed a reversible unfolding-folding process and displayed 

a cooperative behavior in the thermal denaturation process. However, Ca
2+

-bound BA42 

turned out to be more stable than Mg
2+

-bound BA42 and the later more stable than metal–free 

BA42, being the calculated Tm 61.3 ± 0.2 ºC, 57.0 ± 0.2 ºC and 47.9 ± 0.3 ºC, respectively 

(Figure 7B). 

 

BA42 mutants unable to bind Mg
2 + 

reveal the location of the active site 

As mentioned above, the crystalline structure of the AtTLP18.3-Ser complex [2] revealed 

a VDK triad shown to constitute the substrate binding site. Moreover, a calcium ion binding 

site stabilized by six hydrogen bonds was also suggested to be involved in AtTLP18.3 

phosphatase activity. In contrast, the VDK triad it is clearly not present in the structure of 

BA42 (Figure 1B and 1C) and two calcium ions are bound on the other side of the molecule 

(i.e. shifted 20 Å of the corresponding metal binding site in AtTLP18.3). At this point, based 
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on our experiments we could not exclude the coexistence of two metal binding sites in BA42: 

one structural identified in the BA42 crystal structure and one catalytic as proposed in 

AtTLP18.3. If structural sites had higher affinity than the catalytic site it would be difficult to 

identify the two sites from titrations. Therefore, in order to evaluate these possibilities we 

conducted mutagenesis experiments. First, we generated a BA42 variant comprised of 

residues 1-130 (BA42-CT). BA42-CT lacks the C-terminal region where most of the 

residues constituting the metal binding site are located (Figure 8A and 8B). Interesting, no 

activity in the presence of Mg
2+ 

was detected for BA42-CT as compared with the wild-type 

protein (Figure 8D), thus ruling out the presence of a catalytic site in BA42 in a region 

different from that constituted by the metal binding site. In addition, in contrast to the wild-

type protein where the structural change in the presence of Mg
2+

 was clearly evident, 1D
 1

H 

NMR spectra of BA42-CT were virtually unchanged in the presence of the divalent ion 

(Figure 8C).  

However, although the results obtained with BA42-CT clearly demonstrate the absence 

of a catalytic site outside the metal binding site in BA42, the generation of this mutant 

involves the removal of a large number of amino acids which can lead to a subtle 

conformational change that may indirectly affect the potential active site. Therefore, we 

considered that to better evaluate the enzyme activity of BA42 it would be more appropriate 

to produce a protein variant with fewer mutated residues which, similar to BA42-CT, had 

the characteristic of not binding Mg
2+

. In this respect, we generated BA42 variants carrying 

single-point mutations in residues involved in the metal binding site. We found that the 

single-point mutation of Glutamic acid 30 to Alanine (BA42-E30A) generated a protein 

which lacked the ability to bind Mg
2+

 (Figure 8C). It is interesting to note that Glutamic 30 

has the particularity of interacting with the two metals ions in the structure of BA42 (Figure 

8B) and is highly conserved among stand-alone TPM proteins (Figure 1B). In line with the 
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behavior observed for BA42-CT, the mutant BA42- showed no significant differences 

between the 1D 
1
H NMR spectra of the metal-free protein and in the presence of Mg

2+ 

(Figure 8C). But most importantly, BA42-E30A did not show phosphatase activity (Figure 

8D). This observation was congruent with the previous results with BA42-CT, but in this 

case the loss of activity was associated to a single-point mutation of a residue specifically 

involved in the metal binding site of BA42, discarding any artifact due to the removal of a 

large number of amino acids. 

As a control, CD spectra of the BA42-E30A and BA42-CT were found to be practically 

identical to the spectrum of the metal-free wild-type protein (Figure 8E), thus indicating the 

integrity of the secondary structure and the absence of large conformational changes of 

mutant proteins with respect to the metal-free wild-type BA42. 

 

DISCUSSION 

 

BA42 is the first member of the PF04536 family comprised of a stand-alone TPM domain 

structurally and biochemically characterized to date. The structure of BA42 uncovers a new 

topological variant of the four -strands constituting the central -sheet of the  

architecture and a double metal binding site stabilizing a pair of crossing loops, not observed 

in previous structures of proteins belonging to this family. Furthermore, in contrast to other 

characterized TPM family members, BA42 has predicted cytoplasmic localization.  

Previously, another structural characterized TPM-containing protein, AtTPL18.3, was 

reported to have phosphatase activity [2]. Here we show that beside the fact that BA42 has 

the conserved residues involved in the catalytic mechanism, they do not have a spatial 

arrangement compatible with the active site reported for AtTPL18.3 [2]. Despite this 
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discrepancy in the structure of the potential active site, in this work we demonstrate that 

BA42 has phosphatase activity and displays characteristics compatible with psychrophilic 

enzymes [16] presenting a maximum activity at 20-22 ºC. In this sense, it is worth to mention 

that the most favorable growth condition of Bizionia argentinensis it is around 22-25 °C, 

which is surprisingly similar to the optimal catalytic temperature reported here for BA42. 

Although the absolute values of activity are low compared with other hydrolases enzymes 

[17], they are in line with those reported previously for other members of the TPM family [2, 

7]. Furthermore, since the physiological substrate of BA42 is not known, the low activity 

observed in vitro may also be attributed to suboptimal reaction conditions.  

In the present study, we show the strict dependence of the activity of BA42 on the 

presence of divalent ions. Although the protein presents no activity when pretreated with 

EDTA, activity is observed after treatment with different metallic cationic ions. Interestingly, 

an increase of about five fold is observed in the presence of Mg
2+

 in comparison with other 

metals tested. This increase in the enzyme activity is associated to a conformational change of 

BA42 from a structure with an unfolded C-terminal region to a closed structure with the C-

terminal tail bound to the protein core. However, all metals tested induce a similar 

conformational change in BA42 and even with higher affinity than Mg
2+

. The major 

differences in the conformation of Mg
2+

-bound BA42 reside in the dynamics of the crossing 

loops and the metal binding site. Two independent experiments denote an increase in the 

flexibility of these regions. First, the HSQC spectra of the Mg
2+

-bound protein reveal the 

disappearance of amide signals of residues adjacent to the cation binding site and residues 

131-137, comprising the up crossing loop in the Ca
2+

-bound BA42, which presented a 

defined conformation. Since neither a large chemical shift variation nor an increase in solvent 

exposure was detected in this region, we conclude that this is due to a gain in flexibility (in 

the scale of slow or intermediate movements, μs-ms). Second, 
15

N relaxation experiments 
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clearly show an increase in slow movements (μs-ms) of residues D22-E30, comprising the 

down crossing loop, and N140-K144, belonging to the C-terminal portion. Furthermore, the 

lower conformational stability of Mg
2+

-bound BA42 with respect to Ca
2+

-bound BA42, 

detected in thermal denaturation experiments, could be attributed to an increase in the 

flexibility of this region. In line with this, MD simulations provide further evidence of 

increased flexibility in residues belonging to the C-terminal portion.  

Taken together, these results indicate that binding of Mg
2+

 to BA42 induces local 

flexibility in the region comprising the crossing loops and residues involved in metal binding. 

This characteristic is associated with a decrease in the global conformational stability and an 

improvement of the catalytic activity, compared with Ca
2+

-bound BA42. 

In order to further evaluate the relationship between the flexibility and the catalytic 

activity, we compared the enzyme activity between Ca
2+

-bound and Mg
2+

-bound BA42 as a 

function of temperature (Figure 7C). Although the activity of Ca
2+

-bound BA42 was lower 

than Mg
2+

-bound BA42 over the whole temperature range studied, major differences were 

detected below 26 °C. Interestingly, the maximum activity of Ca
2+

-bound BA42 was found at 

37 °C, shifted about 17º C relative to that observed for the Mg
2+

-bound BA42 (around 20-22 

°C). In consequence, these results were compatible with the idea that the presence of a 

flexible active site in BA42 generates a more efficient enzyme to catalyze at low 

temperatures.  

In response to low temperatures, psychrophiles use diverse strategies for adaptation [18, 

19]. In most organism the flexibility of the structural elements that are involved in the 

catalytic cycle of enzymes are commonly adjusted, resulting in a loose structure characterized 

by a low local conformational stability and/or by destabilization of the whole molecule [9, 

20]. This involves a reduction in the number and strength of all types of weak interactions or 

the disappearance of stability factors, resulting in improved dynamics of active site residues 
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in the cold. In this scenario, based on our results, we can hypothesize that the region 

comprising the crossing loops and residues involved in metal binding in BA42 is directly 

related to the catalytic mechanism and may contain the active site. Furthermore, it has been 

observed in several enzymes that “crossing loops” structures are part of the active site [21, 

22]. In this respect, the results obtained with BA42-CT and BA42-E30A were crucial to 

circumscribe the active site of BA42 in a region constituted by the metals binding site and to 

rule out  the existence of an active site similar to the reported for AtTLP18.3 [2]. At this 

point, given the differences observed between BA42 and AtTLP18.3 regarding the folding 

topology, the metal binding site and the location of the active site we propose that to study 

TPM-containing proteins more appropriately, they might be classified in at least two groups: 

membrane-associated TPMs and cytoplasmic stand-alone TPMs. Cytoplasmic stand-alone 

TPMs seem to be almost exclusively conserved within the phylum Bacteroidetes, while 

membrane-associated TPMs appear to be conserved over a wide range of organisms 

(including plants, fungi and bacteria). In particular, since both groups of TPM-containing 

proteins are found in Bacteroidetes, we hypothesize that these domains have evolved 

independently. In addition, cytoplasmic stand-alone TPMs are mainly found in marine 

organisms adapted to low temperatures and, therefore, we assume that the members of this 

group conserve structural features compatible with the activity at these environmental 

conditions, similar to those described for BA42.  

On this bases, we hypothesize that BA42 might evolved a catalytic site where activity at 

low temperature is regulated, at least in part, by varying the flexibility of the active site. In 

the presence of Ca
2+

 the active site becomes rigid and the activity is depressed, whereas the 

binding of Mg
2+

 enhances the flexibility in a way compatible with catalysis at low 

temperatures (Figure 9). In this sense, Mg
2+

 is the most abundant divalent metal in living 

cells. It has been reported that the intracellular levels of Mg
2+

 in marine bacteria may vary 
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from 130 to 710 mM in normal growth conditions [23] and even up to 910 mM under carbon 

limitation or dormancy [24]. In addition, the intracellular Ca
2+

 concentration in these 

organisms ranges from 10 to 80 mM [23]. Therefore, given the high concentration of these 

two metals, it can be predicted that BA42 may be found in the cytoplasm as metal-bound 

protein and the relative levels of Ca
2+

 and Mg
2+

 could be an important factor to modulate the 

phosphatase activity.  

 

In conclusion, the results shown here contribute to the understanding of the relationship 

between structure and function of this recently characterized family of TPM domains. Our 

work, in conjunction with other previously described to date, suggest that the phosphoric 

hydrolase activity of the TPM scaffold has been conserved throughout evolution. However, 

more research is needed to uncover the catalytic and regulatory mechanisms relevant to its 

cellular function. 

 

MATERIALS AND METHODS 

 

Construction of BA42 mutants 

BA42-ΔCT gene was amplified by PCR using Bizionia argentinensis genomic DNA as 

template, 5´-ATGTCTAAAATAGAAGAGTTTTTAAC-3´ (primer A) as 5´-primer and 5´-

CCATGGAAAATATTTTGCCAAAGC-3´ as 3´-primer. BA42- site-directed mutant was 

generated by the megaprimer method using Bizionia argentinensis genomic DNA as template. 

The megaprimer was synthesized in a first PCR reaction using primer A as 5´-primer and 5´-

GAACACGTATGGCGCCAGACGTG-3´ as Mutagenic primer. The second PCR reaction was 

performed using the megaprimer as 5´-primer and 5´-TCCTTTTGAAATTGTGTTTGG-3´ as 3´-
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primer. The final PCR products were purified and cloned between NdeI and BamHI restriction 

sites of the pET-28a(+) vector (Qiagen). Recombinant proteins contain a TEV protease cleavage 

site followed by 6xHistidine tag for affinity purification. The quality of the preparations was 

analyzed by DNA sequencing. Finally, the recombined expression plasmids were transformed in 

Escherichia coli BL21 (DE3) competent cells (Stratagene, La Jolla, CA).  

 

Protein expression and purification 

BA42 recombinant proteins were expressed and purified as previously described [4].  

Phosphoric-monoester hydrolase activity 

The phosphoric-monoester hydrolase activity of BA42 was assayed by using of p-nitro-

phenylphosphate (pNPP) (New England Biolabs) and O-phosphoserine (pSer) (Sigma-

Aldrich) as substrates. The reaction solution contained 15 μg of purified BA42, 25 mM 

HEPES (pH 7), and the substrates in a total volume of 0.1 mL. The reactions were initiated 

by the addition of 20 mM pNPP or pSer, and quenched by the addition of 10 µL of 1M 

NaOH. When pNPP was used as a substrate, the activity was measured by monitoring the 

change in the absorbance at 405 nm (ε405nm = 18,300 M
-1

 cm
-1

) as pNPP (colorless) is 

converted to p-nitrophenol (pNP, yellow). For pSer, the method of Eibl and Lands [25] was 

used to detect the Pi released. All the assays were performed in triplicate. Enzymatic kinetics 

was analyzed by fitting the data to the allosteric sigmoidal equation using the nonlinear 

regression equation Vi = (Vmax · [S]
h
)/ (Kmapp + [S]

h
), where Vi is the initial velocity, [S] is 

the concentration of the substrate and h is the Hill slope. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

In order to analyze the effect of divalent metal ions on the phosphoric-monoester 

hydrolase activity of BA42, the protein was treated with 1 mM EDTA for 10 min and then 

extensively dialyzed against 25 mM HEPES (pH 7.0). After this treatment and before starting 

the enzymatic reaction, the enzyme was incubated with 1 mM CaCl2, 1 mM MgCl2, 1 mM 

MnCl2 or 1 mM ZnCl2 in the reaction buffer at 22°C for 10 min, as indicated. The optimal 

reaction conditions for BA42 were determined using pSer as substrate. The optimal pH was 

determined by using 25 mM acetic-acetate buffer (pH 5 to 7), 25 mM Tris-HCl buffer (pH 7 

to 9), and 25 mM glycine-NaOH buffer (pH 9 to 12). 

 

Circular Dichroism (CD) measurements 

CD measurements were made on a Jasco J-815 spectropolarimeter (Jasco Inc., Easton, 

MD, USA). Circular dichroism spectra of BA42 were obtained in the range of 185–250 nm 

using a 0.2 mm path length and expressed in molar ellipticity (Ɵ) (deg.cm
2
.dmol

–1
). All 

measurements were carried out at a protein concentration of 2 µM in 20 mM HEPES pH 7.0. 

Unfolding transitions as a function of temperature were monitored at 222 nm. 

Temperature was varied from 25 to 75 °C at a constant rate of 1 °C.min
-1

 and sampling at 

intervals of 1 °C. 

 

NMR spectroscopy 

NMR samples, data acquisition and processing  

Samples for NMR experiments contained 0.3–0.8 mM 
15

N-labelled BA42 or 0.05-0.1 

mM unlabeled BA42 dissolved in a buffer containing 25 mM NaCl, 20 mM HEPES and 5% 

D2O, pH 7. NMR experiments were performed at 298 K in a Bruker 600 MHz Avance III 
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spectrometer (Bruker Instruments, Inc., Bellerica, MA, USA) equipped with a 5-mm triple 

resonance cryoprobe incorporating shielded z-axis gradient coils. The NMR data were 

processed using NMRPIPE [26] and analyzed using NMRVIEWJ [27].  

 

1
D NMR measurements 

  

 The 1-1 Jump-and-return water suppression pulse sequence was used for 
1
H 1D NMR 

experiments. In order to follow the conformational change of BA42 in the presence of 

divalent metals we measured the peak integral of methyl groups of residues I100 and V88, as 

reported previously [4]. 

 

15
N spin relaxation measurements 

 Measurements of 
15

N T1, T2 and steady-state 
1
H-

15
N NOE (hnNOE) of BA42 was 

performed at a nitrogen frequency of 60.82 MHz and 298 K, using standard pulse schemes in 

an interleaved manner. Both T1 and T2 data were acquired with six relaxation delays. The 

delays used were 7, 300, 600, 900, 1200 and 1600 ms for the T1 calculations and 15.7, 31.4, 

62.8, 125.5, 156.9 and 219.7 ms for the T2 calculations. The rate analysis routine of 

NMRVIEWJ was used to analyze the data [27]. The hnNOE values were determined by the 

ratio of peak volumes of spectra recorded with and without 
1
H saturation, employing a net 

relaxation delay of 4 s for each scan in both experiments. Typically, errors were ~ 1% for T1 

and T2 and 2–5% for hnNOE measurements. 

Molecular dynamics 

The initial structure files were obtained from the structure of BA42 from the Protein Data 

Bank (PDB ID: 4OA3) [4]. The AMBER99SB force field was used [28] and tleap program 

was used to create the topology and coordinate files. Amber was used for all molecular 
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dynamics simulations [29]. Water molecules for explicit solvent conditions were represented 

using the TIP3P model [30]. The system was equilibrated in the NVT ensemble by running a 

25 ps long MD simulation using the Berendsen thermostat [31] and then the temperature was 

slowly raised to 300K while running another 25 ps long simulation. During these processes 

the CA atoms were restrained using a harmonic potential with a 20 kcal/mol constant for the 

thermalization. This was followed by an equilibration process of 50 ps with a 1 fs time step 

using Berendsen temperature with a coupling constant of 0.1 ps for keeping temperature 

constant at 300 K and Berendsen barostat for keeping pressure constant at 1 atm [31]. During 

200 ns long production runs, the temperature was kept constant by the Berendsen thermostat 

algorithm set at 300 K with a 0.1 ps coupling constant and pressure was kept constant at 1 

atm by the Brendsen barostat [31]. The SHAKE algorithm was used for constraining the 

bonds that contained an H atom [32] and electrostatic interactions were calculated by the 

Particle Mesh Ewald decomposition algorithm [33]. A 2 fs time step was used. VMD program 

was used for visualization and RMSD and RMSF calculations [34]. 
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Figure 1: (A) Alignment of BA42 with the amino acid sequence of the TPM domain of 

AtTLP18.3 from A. thaliana generated by ClustalW (http://www.ebi.ac.uk/clustalW). Yellow 

box indicate conservation of the Val101 and Asp102 proposed to be involved in substrate 

binding in AtTLP18.3. Residues shaded in blue are strictly conserved. (B) Sequence 

alignment of BA42 and five homologs belonging to the phylum Bacteroidetes. Red dots 

indicate residues involved in metal coordination in the crystal structure of BA42. The 

conservation of the down loop and -strand I residues is shown boxed in red. Residues 
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shaded in blue are strictly conserved and those shaded in light blue are partially conserved. 

(C) Schematic superposition of crystal structures of BA42 (blue) and AtTLP18.3 (brown). 

The solid spheres represent the Ca
2+

 ions in both structures. The residues of the ligand 

binding site of AtTLP18.3 and the conserved aminoacids in BA42 are highlighted in red.   

 

 

 

Figure 2:  Phosphatase activity of BA42. A) The activity was assayed with the general 

substrates p-nitrophenyl phosphate (pNPP) and phosphoserine (pSer) by incubating samples 

of BA42 in 20 mM Tris-HCl (pH 7.5) at 25 ºC in the presence or absence of EDTA. TEV 

protease was used as a control.  B) Effect of divalent metal ions on the phosphatase activity. 

BA42 was treated with EDTA, extensively dialyzed to remove the EDTA, and finally tested 

its phosphatase activity in 25 mM HEPES (pH 7.0) at 22 ºC and in the presence of several 

divalent metals. All experiments were performed in triplicate and results are expressed as 

mean  SEM. 
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Figure 3: Biochemical characterization of the phosphatase activity of BA42. Mg
2+

-bound 

BA42 was incubated under different conditions with pSer and the Pi released was 

biochemically quantified. A) Influence of pH on phosphatase activity. The phosphatase 

activity was measured at different pHs at 22 ºC. The maximum activity was found around pH 

7. B) Effect of temperature on enzyme activity. The phosphatase activity was measured at 

different temperatures in 25 mM HEPES (pH 7.0). The maximum activity was observed at 20 

°C. C) Enzymatic kinetics under optimal catalytic conditions. The phosphatase activity of 

Mg
2+

-bound BA42 was measured at increasing concentrations of substrate at pH 7 and 20 °C. 

All experiments were performed in triplicate and results are expressed as mean  SEM. 
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Figure 4: Relationship between the enzyme activity and the binding of divalent metals to 

BA42. The metal-free BA42 (10 M) was incubated in solutions containing 20 mM Tris-HCl, 

(pH 7), 20 mM pSer and varying concentrations of different divalent metals. A) The metal 

binding was followed by monitoring the conformational change from metal-free to Me
2+

-

bound BA42 by 1D 
1
H NMR spectra. B) Phosphatase activity of Me

2+
-bound BA42 at 

different metal concentrations. C) Phosphatase activity and conformational change of metal-

free BA42 as a function of Mg
2+

 concentration. 
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Figure 5: Changes in 
1
H-

15
N HSQC spectrum of BA42 induced by Mg

2+
 and Ca

2+
. Upper 

panel: The overlapping 
1
H-

15
N HSQC spectra of Mg

2+
-bound BA42 (red) and Ca

2+
-bound 

BA42 (black) is displayed. In the zoomed view, the variation of the amide signal for selected 

residues is indicated as example. The cross peak of residue 134 is not present in Mg
2+

-bound 

BA42 spectrum and there is a significant chemical shift perturbation of the amide signal of 

residue 30 between the two spectra. Lower panel: The overlapping 
1
H-

15
N HSQC spectra of 

Mg
2+

-bound BA42 (red) and BA42- Apo (blue) is displayed. 
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Figure 6: HN chemical shift perturbation and dynamics of Mg
2+

-bound and
 
Ca

2+
-bound 

BA42. A) HN chemical shift perturbation. Overhead, the secondary structure of BA42; the α-

helices are represented by white arrows and β-sheets by grey cylinders. The  threshold 

value was set to 0.06. B) Comparison of 
15

N T1/T2 ratios of Mg
2+

-bound (black) and
 
Ca

2+
-

bound (red) BA42.  The bars are drawn in order to easily compare residues between plots A, 

B and the secondary structure of BA42. The light orange bars highlight residues with highest 

chemical shift perturbation values. The light blue bar highlights the missing residues in the 

1
H-

15
N HSQC spectra of Mg

2+
-bound BA42. C) 

1
H−

15
N heteronuclear NOE of BA42. H-N 

NOEs were measured for the Ca
2+

-bound BA42 (red) and Mg
2+

-bound BA42 (black).  D) MD 

simulations of metal-bound BA42. RMSF calculations for Ca
2+

-bound BA42 (red) and Mg
2+

-

bound BA42 (black) are shown. E) Ribbon view of metal-bound structure evidencing the 

residues with highest chemical shift perturbation values (in orange) and the missing residues 

in the 
1
H-

15
N HSQC spectra of Mg

2+
-bound BA42 (in blue). F) Surface plot of the structure 

displayed in D). G) RMSD calculations for Ca
2+

-bound (black) and Mg
2+

-bound BA42 (red).  
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Figure 7: A) Circular dichroism spectra of BA42. The CD spectra of metal-free (black line), 

Mg
2+

-bound (red line) and Ca
2+

-bound BA4 (blue line) were recorded at 25º C. B) Thermal 

unfolding process of BA42. Metal-free (black line), Mg
2+

-bound (red line) and Ca
2+

-bound 

BA4 (blue line) were incubated at different temperatures from 25 to 75 °C and the molar 

ellipticity at 222 nm was recorded at intervals of 1 °C. C) Effect of temperature on enzyme 

activity of BA42. The phosphatase activity was measured at different temperatures in 25 mM 

HEPES (pH 7.0) and in the presence of 1 mM CaCl2 (blue dots) or 1 mM MgCl2 (red dots). 

The activity assays were performed in triplicate and the results are expressed as mean  SEM. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Figure 8: Analysis of BA42 mutants. A) Schematic representation of the primary sequence of 

BA42 where residues involved in the metal binding site and the C-terminal region are 

indicated. The mutant BA42-ΔCT is comprised of residues 1-130 (yellow rectangle) and 

lacks the C-terminal region (green rectangle). The red triangles indicate the residues involved 

in metal 1 binding site and blue triangles highlight those interacting with metal 2. The purple 

triangle indicates the Glutamic acid 30 that interacts with both metals. B) A detail of the 

structure of BA42 showing the metal-binding region. The solid spheres represent the Ca
2+

 

ions (arbitrary labeled as 1 and 2) and the residues of the metals binding site are highlighted 

in red. C) 1D 
1
H-NMR spectra of BA42 variants in the range of 0.25 to -1.75 ppm. The 

spectra were recorded for the metal-free proteins and in the presence of 6 equivalents of 

Mg
2+

. (D) The phosphatase activity of Wt BA42 and mutants proteins was assayed in the 

presence of 6 equivalents of Mg
2+

. E) The CD spectra of metal-free Wt (black line), BA42-

ΔCT (dashed line) and BA42-E30A (grey line) were recorded at 25º C. 
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Figure 9: A schematic representation of the metal-dependent behavior of the catalytic region 

of BA42. The figure illustrates the postulated mechanism of phosphatase activity modulation 

by varying the flexibility of the active site. In the absence of divalent metal ions the C-

terminal region of BA42 is extremely disordered and the active site is not formed. In the 

presence of Ca
2+

 the active site acquires a rigid configuration and the activity is low. The 

binding of Mg
2+

 induces an increment of the flexibility of the active site, in comparison with 

the protein bound to Ca
2+

, and the protein activity is highly increased. 

 

 

 


