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1 Introduction

Due to the underlying integrability in its planar limit, N = 4 super Yang-Mills is the bet-

ter understood interacting four-dimensional non-abelian gauge theory (see the review [1]

and references therein). In the strong coupling limit, the integrability is that of the two-

dimensional field theory defined on the worldsheet of the dual string that propagates

in AdS5×S5.

Integrable two-dimensional systems can also be formulated in a half-line if suitable

boundary conditions preserving integrability are imposed. Then, it is reasonable to en-

quire about the integrability of open strings in the background of AdS5×S5. The classi-

cal integrability of open strings attached to various kinds of D-branes has been analyzed

in [2, 3]. In many of those situations, the symmetries of the problem are enough to fix

the boundary scattering matrix exactly, up to an overall reflection factor, as a function of

the coupling [4–6]. In all these cases the resulting reflection matrix was shown to satisfy

the boundary Yang-Baxter condition. Determining the remaining overall reflection factor

exactly is the last step missing to obtain an exact description by means of Bethe ansatz

techniques. As usual, this overall factor can be constrained by the imposition of cross-

ing symmetry. However, there are infinitely many different ways of solving this boundary
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crossing condition. Thus, having explicit computations for the reflection factor in some

limits is indispensable for picking the right solution to the crossing equation.

In this article we compute the boundary reflection factor in the strong coupling limit

for excitations propagating along open strings with large angular momentum attached

to certain kinds of D5-branes, and study solutions of the crossing equations consistent

with them. More specifically, we consider two families of D5-branes in the background of

AdS5×S5. The first family contains D5-branes whose worldvolume has the geometry of

AdS2×S4 and an electric field in the AdS2 factor. The second family contains D5-branes

whose worldvolume has the geometry of AdS4×S2 and a magnetic field in the S2.

All these D5-branes are 1
2 -BPS and the two families have different interpretations in

the dual conformal field theory. The D5-branes of the first family are the dual description

of 1
2 -BPS Wilson loops in the k-th rank antisymmetric representation of the SU(N) in

N = 4 super Yang-Mills theory [7], where k is related to the amount of electric flux in the

D5-brane. Actually, the relation between certain D5-branes and multi-quark states had

already been pointed out in [8]. The D5-branes we consider here in the first family are a

limiting case of those other ones [9]. The matrix structure in the corresponding scattering

problem is fixed by the underlying symmetry, which is in this case a diagonal su(2|2) of

the usual su(2|2)2 for the case with no boundaries. Certainly, the underlying symmetry is

independent of k, so for all values of k the matrix structure of the reflection is same. In

the limiting case of k = 1, for which the size of its S4 shrinks to zero and the D5-brane

reduces to the string dual to a fundamental 1
2 -BPS Wilson loop, this matrix structure has

been obtained in [10, 11]. Thus, the boundary reflection matrix for the D5-branes in this

case is the same as the one for the string dual to the Wilson loop in the fundamental

representation [10, 11]. The difference will be at most in the overall reflection factor, which

is not fixed by symmetry arguments.

The D5-branes of the second family are interpreted in the dual conformal field theory

as having fundamental hypermultiplets living on a 2+1-dimensional defect in addition to

N = 4 super Yang-Mills [12]. The addition of magnetic flux in the D5-brane is interpreted

in the dual defect theory as if some fields of the fundamental hypermultiplet had acquired

a vacuum expectation value [13]. In this case, the underlying symmetry that constrains

the reflection matrix is also the same independently of the amount of magnetic flux. Then,

the matrix structure of the reflection is the same one found in [5].

This paper is organized as follows. In section 2 we present classical open strings

carrying large angular momentum along the S5 and with their endpoints attached to D5-

branes of the sorts discussed above. Then, in section 3 we study excitations that propagate

in the worldsheet and compute the time delays during their reflections, which allow us

to obtain the boundary reflection factors in the strong coupling regime. We proceed in

section 4 to compute the difference between energy and angular momentum for strings

attached to a pair of oblique D5-branes, in the limit of large but finite angular momentum.

In section 5 we analyze different solutions of the boundary crossing and unitarity equations

which are consistent with the results obtained in sections 3 and 4. We summarize and

discuss our results in section 6.
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2 Classical strings ending on D5-branes with fluxes

In this section we describe semiclassical open strings rotating in AdS5×S5, whose endpoints

are attached to certain kinds of D5-branes. In first place, we will consider the case in

which they carry a large amount L of five-sphere angular momentum and have E − L =

0. Later on, we will use these configurations as reference states along which impurities

can propagate.

Let us begin by describing the D5-branes we will use to impose boundary conditions

to the open strings. We will analyze two families of D5-branes:

1. D5-branes with AdS2×S4 worldvolume and an electric field;

2. D5-branes with AdS4×S2 worldvolume and a magnetic field.

If we write the metric of AdS5×S5 in global coordinates

ds2 = R2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 + dα2 + sin2 αdΩ2

4) , (2.1)

the D5-branes of the first family are extended along t, ρ and Ω4, while they sit at a fixed

value α0 of the azimuthal angle. This value is related to the intensity of the electric field

in the AdS factor of the worldvolume by1

F = Ftρ dt ∧ dρ , with Ftρ = ±2g cosh ρ cosα0 . (2.2)

Half of this worldvolume is at some point2 of the Ω3 sitting in AdS specified by β = β0

and ψ1 = ψ2 = π
2 . The other half is at β0 + π and ψ1 = ψ2 = π

2 (see figure 1). Then the ±
signs above correspond to the sheets at β = β0 and β = β0 + π respectively.

When there is no electric field, the S4 of the worldvolume is of maximal size and sits on

the equator of the S5. On the other hand, when electric flux is turned on in the D5-brane,

the S4 of the worldvolume is displaced away from the equator. The amount of electric flux

is discretized according to [14, 15]

k

N
=
α0

π
− sin 2α0

2π
, (2.3)

where k is an integer. As said before, these D5-branes are dual to BPS Wilson loops in the

antisymmetric representation and the integer k is in correspondence with the rank of this

representation [7].

The second family of D5-brane solutions has been found in [16]. In this case the AdS

factor of the worldvolume is defined through the radial position of the brane as a function

of the angular position in the S3 ⊂ AdS5, as schematically depicted in figure 2. In the S5

1In the conventions we follow g = R2

4πα′ =
√
λ

4π
.

2For the 3-sphere in AdS we use

dΩ2
3 = dψ2

1 + sin2 ψ1

(
dψ2

2 + sin2 ψ2dβ
2) .
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×

α0

Ftρ

Figure 1. In blue we depict the D5-brane worldvolume, i.e. an AdS2 factor within AdS5 and a S4

within the S5. In red we draw the worldsheet of a string with large angular momentum attached

to this D5-brane.

×

Figure 2. In blue we depict the D5-brane worldvolume, i.e. an AdS4 factor within AdS5 and a S2.

In red we draw the worldsheet of a string with large angular momentum attached to this D5-brane.

the D5-brane is extended along the azimuthal angle α and a circle in Ω4. This defines an

S2 on which a magnetic field can be turned on,

F = Fαϕ dα ∧ dϕ =
q

2
sinαdα ∧ dϕ , (2.4)

where q is the integer that specifies magnetic flux. The D5-brane probes the interior of

AdS from the boundary to a distance ρ0 given by

sinh ρ0 =
|q|
4g
. (2.5)

2.1 Semiclassical strings

In what follows we will present open string solutions carrying a large amount of angular

momentum L and attached to D5-branes of the sort described above. For the time being,

we only consider folded string solutions, extended along the azimuthal angle of the sphere

and the radial coordinate of AdS. More general configurations will be studied later on.
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Thus, we will look for strings extended along directions ρ and α, while spinning around

some ϕ which parametrizes a circle in the S4,

t = τ , ϕ = ωτ , (2.6)

ρ = ρ(σ) , α = α(σ) . (2.7)

The equations of motion can be obtained from the Nambu-Goto action,

SNG = −2g

∫
d2σ

√
(cosh2 ρ− ω2 sin2 α)(ρ′2 + α′2) . (2.8)

This action should be supplemented with boundary terms

Sbdry =

∫
dτAµ

dXµ

dτ

∣∣∣∣
σ=π

−
∫
dτAµ

dXµ

dτ

∣∣∣∣
σ=0

, (2.9)

when the D5-branes carry electromagnetic fields.

Let us focus on the boundary conditions set by a D5-brane of the first family. For

α(σ) they are of Dirichlet type, and the endpoints of the string are then forced to be at α0.

Because of the angular momentum, the string will be stretched away from α0 towards the

equator of the S5. In the limit L → ∞ the folded string will be extended from α0 all the

way to the equator and back to α0. In AdS the string will be stretched from 0 to some ρ0

because the electric field will pull its endpoints. From now on, we will concentrate on one

half of the folded string so the boundary condition driven by a term like (2.9) will apply to

the right endpoint only, while the left endpoint will be moving along a null geodesic, i.e.

ρ = 0 and α = π
2 .

The string can be parametrized by α and it is then easy to check that the equations

of motion are solved with

cosh ρ =
1

sinα
and ω = 1. (2.10)

Concerning the boundary condition for the right endpoint, we have(
∂L
∂ρ′

+ Ftρ

)∣∣∣∣
α=α0

= 0 . (2.11)

It is straightforward to verify that the solution (2.10) satisfies this condition,3(
∂L
∂ρ′

+ Ftρ

)∣∣∣∣
α=α0

= 2g (cotα0 − cosα0 cosh ρ(α0)) = 0 . (2.12)

This solution is a fraction of the one found by Drukker and Kawamoto in [18], and

reduces to it in the limit of α0 → 0.

Now we would like to compute the energy and the angular momentum of this solution.

Both E and L are divergent, but we are actually interested in the difference E−L. There are

3In the conventions we are using the right endpoint sits at β0 + π.
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two kinds of contributions to the difference, from the bulk density and from the boundary

term, and they cancel exactly,

E − L = 2g

∫ α0

π/2
dα

1

cosα

(
1

sin2 α
− sin2 α

)
+ At

∣∣∣∣
α=α0

= −2g
cos2 α0

sinα0
+ 2g cosα0 sinh ρ(α0) = 0 . (2.13)

Here, we used

At = 2g sinh ρ cosα0 , (2.14)

which is the gauge potential leading to (2.2) for the right endpoint.

In this parametrization, the density of angular momentum becomes infinite as α ap-

proaches π
2 . Alternatively, we can parametrize the same solution in terms of a semi-infinite

spatial coordinate x ∈ (−∞, 0]:

ρ = arccosh

(
1

tanh(x0 − x)

)
, (2.15)

α = arccos

(
1

cosh(x0 − x)

)
, (2.16)

ϕ = t , (2.17)

where coshx0 = 1
cosα0

and x0 > 0. In this gauge the solution is a static soliton in a

semi-infinite line. Far from the soliton, i.e. for x � 0, the density of angular momentum

becomes constant.

Let us now turn our attention to open strings ending on D5-branes of the second

family. The boundary terms will be different, leading to different boundary conditions. In

this case, it is more natural to use ρ to parametrize the string with 0 < ρ < ρ0, and we will

then have the right endpoint fixed at ρ0. The boundary condition for the right endpoint

is now (
∂L
∂α′

+ Fϕα

)∣∣∣∣
ρ=ρ0

= 0 . (2.18)

Of course, (2.10) is still a solution to the equations of motion. Interestingly, it also satisfies

this other boundary condition and the configuration continues to have E = L.

3 Reflection factor in the strong coupling limit

We are now going to consider more general classical string solutions. On top of the static

soliton we found in section 2, we can add propagating solitons which are reflected off the

right boundary. From the solution that corresponds to a reflecting soliton, we will calculate

the time delay experienced during the reflection and from it we will compute the reflection

phase factor.

By means of a Pohlmeyer reduction, one typically relates classical solutions in a S2

σ-model to classical solutions in a sine Gordon model [20]. The Pohlmeyer reduction can be

– 6 –



J
H
E
P
0
5
(
2
0
1
3
)
0
9
5

generalized to relate solutions in an AdS2× S2 σ-model to solutions in a sine/sinh Gordon

model [21]. If the σ-model is defined in the half-line then so will be the sine/sinh Gordon

system. We can parametrize the AdS2 and the S2 with

η1 = cosh ρ cos τ , n1 = sinα cosϕ ,

η2 = cosh ρ sin τ , n2 = sinα sinϕ , (3.1)

η3 = sinh ρ , n3 = cosα ,

where ηi and ni satisfy η ·η = −(η1)2−(η2)2+(η3)2 = −1 and n·n = (n1)2+(n2)2+(n3)2 =

1. The Virasoro constraints for a string in this parametrization are

η̇2 + η′
2

= −1 , η̇ · η′ = 0 ,

ṅ2 + n′
2

= 1 , ṅ · n′ = 0 ,

where η or n scalar products should be used in each case.

Following the Pohlmeyer reduction, the σ-model fields are related to a sine Gordon

field φ and a sinh Gordon field ϕ according to

η̇2 − η′
2

= − cosh 2ϕ , (3.2)

ṅ2 − n′
2

= cos 2φ . (3.3)

Let us concentrate on the sine Gordon part of the system. Its equation of motion is

φ′′ − φ̈ =
1

2
sin 2φ . (3.4)

In a half-line x ≤ 0, the most general boundary condition consistent with integrability

is [22]

φ′
∣∣
x=0

= M sin(φ−φ0)|x=0 , (3.5)

where M and φ0 are constants. We will now show that the boundary conditions inherited

from the σ-model with different sorts of D5-brane boundary conditions lie within this class.

3.1 AdS2×S4 D5-brane with electric field

In this case the D5-brane is placed at some value α0, so the σ-model fields α and ϕ satisfy

Dirichlet and Neumann boundary conditions respectively,

α̇|x=0 = 0 , ϕ′
∣∣
x=0

= 0 . (3.6)

Thus, the first Virasoro constraint at the boundary reads

α′
2
∣∣∣
x=0

+ sin2 α0 ϕ̇
2
∣∣
x=0

= 1 . (3.7)

The sine Gordon field is related to the σ-model fields according to,

cos 2φ = α̇2 − α′2 + sin2 α
(
ϕ̇2 − ϕ′2

)
, (3.8)
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and then we conclude that

sinφ|x=0 = α′
∣∣
x=0

, cosφ|x=0 = sinα0 ϕ̇|x=0 . (3.9)

By considering the derivative of equation (3.8) and the first Virasoro constraint, we obtain

φ′
∣∣
x=0

= − cotα0 cosφ|x=0 , (3.10)

which is a boundary condition consistent with integrability, namely of the form (3.5) for

M = cotα0 and φ0 = π
2 .

The static soliton configuration (2.15)–(2.17) is a particular solution satisfying the

boundary condition (3.10). We will now consider more general solutions. Multisoliton

solutions in the sine Gordon model with integrable boundaries are known [23]. To get a

travelling soliton that is reflected off the boundary, one can consider two solitons on the

full line (−∞,∞), one with velocity v and its image with respect to x = 0 with velocity

−v. For the sort of boundary we are considering, there is also a soliton at the boundary,

so we will consider a static third soliton. For this kind of solutions satisfying the boundary

conditions (3.5), the classical phase shift a is known (cf. (2.15) in [23]). The classical

time delay is obtained from it through the classical relation ∆T = a
√

1−v2
v , where v is the

velocity of the travelling soliton. As a function of the rapidity v = tanh θ the time delay is

∆T =
1

sinh θ
log

[
± tanh2 θ

2
tanh2 θ

tanh 1
2(θ + iη) tanh 1

2(θ − iη)

tanh 1
2(θ + ζ) tanh 1

2(θ − ζ)

]
, (3.11)

where ζ and η parametrize M and φ0 as

M cosφ0 = cosh ζ cos η , M sinφ0 = sinh ζ sin η , (3.12)

and the rapidity θ is related to the energy and momentum of the σ-model soliton according

to

cosh θ =
4g

ε
=

1

| sin p
2 |
. (3.13)

The signs ± in (3.11) correspond to the cases |θ| ≷ ζ. We are interested in the particular

type of boundary conditions obtained when M = cotα0 and φ0 = π
2 . For them, we get

∆T = 2 tan
p

2
log
(

cos
p

2

)
+ tan

p

2
log

[(
1− sin p

2

1 + sin p
2

)(
sinα0 + sin p

2

| sinα0 − sin p
2 |

)]
. (3.14)

The second term is the delay due to the static soliton at the boundary. As expected this

term is vanishing for α0 → π
2 when there is no boundary soliton.

The time delay is related to the reflection phase δ of a reflection factor R = eiδ [24].

More precisely,
dε

dp
∆T =

dδ

dp
, (3.15)

which allows us to obtain δ by integration. We will consider here a right boundary and

split δ = δ0 + δextra. In this splitting δ0 is the reflection phase as if the static soliton had

– 8 –



J
H
E
P
0
5
(
2
0
1
3
)
0
9
5

α0 = 0. Since it has already been computed, here we shall focus on the extra reflection

phase δextra. In general, reflection and scattering phases depend on the gauge used in the

σ-model. In particular, in a σ-model gauge such that the density of momentum is constant4

δ0 is [4, 10, 11]

δ0 = −8g cos
p

2
log
(

cos
p

2

)
− 4g cos

p

2
log

(
1− sin p

2

1 + sin p
2

)
. (3.16)

For δextra, in a σ-model gauge where the density of momentum is not constant, we get

δextra = −4g cos
p

2
log

∣∣∣∣sinα0 + sin p
2

sinα0 − sin p
2

∣∣∣∣+4g cosα0 log

∣∣∣∣sin(p2 + α0)

sin(p2 − α0)

∣∣∣∣+4gp(sinα0−1) . (3.17)

In order to translate it into a gauge where the density of momentum is constant, we have

to take into account the length of the boundary soliton, as discussed in detail for the bulk

scattering phase in [25]. Let ∆x be the interval of the boundary soliton in our gauge and

∆x′ the interval in a gauge where density of momentum is constant. The latter is related

to the total momentum L according to L = 2g∆x′, and then the change in the length of

the boundary soliton is

2g∆x− L = 2g

∫ 0

−∞

(
1− dL

dx

)
dx = 2g

∫ 0

−∞
dx cos2 α(x) = 2g(1− sinα0) , (3.18)

where α(x) is given in (2.16). Therefore, in the non-uniform momentum gauge, the last

term in (3.17) would be compensated by twice this length change.5 Thus, in a gauge where

the density of momentum is constant the total right reflection phase is

δ =− 8g cos
p

2
log
(

cos
p

2

)
− 4g cos

p

2
log

(
1− sin p

2

1 + sin p
2

)
− 4g cos

p

2
log

∣∣∣∣sinα0 + sin p
2

sinα0 − sin p
2

∣∣∣∣+ 4g cosα0 log

∣∣∣∣sin(p2 + α0)

sin(p2 − α0)

∣∣∣∣ . (3.19)

Notice that in the limit α0 → 0, the second line in (3.19) vanishes and we recover the

result for a string stretching to the boundary of AdS [10, 11]. On the other hand, when
p
2 = ±α0 the two extra terms in the second line appear to have logarithmic divergencies if

considered separately, but these cancel out to give a regular reflection phase in the strong

coupling limit.

3.2 AdS4×S2 D5-brane with magnetic field

In this other case the D5-brane spans both angular coordinates α and ϕ, so they will satisfy

Neumann-like boundary conditions but modified due to the magnetic field living in the S2.

We will have

α′
∣∣
x=0
− q

2
sinαϕ̇|x=0 = 0 , sinα ϕ′

∣∣
x=0

+
q

2
α̇|x=0 = 0 , (3.20)

where q measures the amount of magnetic flux in the S2.

4If we integrated (3.14) for α0 = 0 we would get an extra term 8g cos( p
2
) because we computed ∆T in a

σ-model gauge for which the density of momentum is not uniform. The computation of this δ0 in a gauge

with constant momentum density was done in detail in [4].
5The open boundary Bethe equations depend on twice the length of the system.
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The first Virasoro constraint at the boundary imposes

sin2 α ϕ̇2
∣∣
x=0

=
1

1 + ( q2)2
− α̇2

∣∣
x=0

, (3.21)

from which we get

cos 2φ|x=0 =
1− ( q2)2

1 + ( q2)2
≡ cos 2φ0 . (3.22)

Then, we have Dirichlet boundary conditions for the sine Gordon field in this case, which

corresponds to M →∞ in (3.5).

The time delay in this case is obtained from (3.11) by taking ζ →∞, and we get

∆T = 2 tan
p

2
log
(

cos
p

2

)
+ tan

p

2
log

[(
1− sin p

2

1 + sin p
2

)(
1 + cosφ0 sin p

2

1− cosφ0 sin p
2

)]
. (3.23)

We can split the reflection phase as before δ = δ0 + δextra, with

δextra =− 4g cos
p

2
log

(
1 + cosφ0 sin p

2

1− cosφ0 sin p
2

)
− 8g tanφ0 arctan

(
sinφ0 tan

p

2

)
+ 4gp

(
1

cosφ0

− 1

)
. (3.24)

The static soliton at the boundary is the same one considered in the previous section,

if we identify cosφ0 with sinα0. The same term (3.18) must then be subtracted to express

the reflection phase in a gauge where the density of momentum is constant. We obtain in

this case

δ =− 8g cos
p

2
log
(

cos
p

2

)
− 4g cos

p

2
log

(
1− sin p

2

1 + sin p
2

)
− 4g cos

p

2
log

(
1 + cosφ0 sin p

2

1− cosφ0 sin p
2

)
− 8g tanφ0 arctan(sinφ0 tan

p

2
) + 4gp

(
1

cosφ0

− cosφ0

)
. (3.25)

4 Strings between D5-branes at angles

In this section we will continue to study strings with large angular momentum, but intro-

ducing a couple of modifications. Firstly, we will consider open strings stretched between

two D5-branes, whose axis defining the AdS or S factors are oblique, i.e. at an angle θ in the

S5 and an angle φ in AdS5. Secondly, we will consider the amount of angular momentum

to be large but finite.

For such configurations, the difference E − L will no longer vanish. Here we compute

it explicitly to leading order in the finite angular momentum correction. For D5-branes

of the first family, we do this in two distinct regimes: when π
2 − α0 is finite and when

α0 → π
2 .6 In the former, the string is long and E − L can be computed classically. In the

latter, the string is short and E − L has to be computed at the quantum level. This can

6An analogous distinction can be made for D5-branes of the second family: when φ0 is finite or in-

finitesimal.
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be done because the short string probes only the neighborhood of a null-geodesic and the

lowest states in its spectrum will be those of an open string in a pp-wave background.

The reason why these computations are useful is that the deviation of E − L from 0

can be interpreted as a leading finite size correction which can be independently obtained

by means of a Lüscher computation. Given that the Lüscher correction depends on an

analytic continuation of the reflection phase, the results of this section will therefore serve

as a consistency check for an exact reflection phase proposal.

4.1 Semiclassical string between D5-branes at angles

We now consider a semiclassical string with large angular momentum L, stretching between

two D5-branes of the first of the two families described in section 2, when π
2 − α0 is finite.

We will separate the D5-branes by an angle φ in AdS space and an angle θ in the sphere.

This computation generalizes the ones of [10, 26] and we just focus on the large L situation.

Because of the angular separation between the D5-branes, the semiclassical string

propagates now in AdS3 × S3. For its metric we employ coordinates

ds2 = R2

(
dr2

1 + r2
− (1 + r2)dt2 + r2df2 +

d%2

1− %2
+ (1− %2)dξ2

1 + %2dξ2
2

)
, (4.1)

and we parametrize the classical string solution as

y1 + iy2 = eit
√

1 + r2 = eiκτ
√

1 + r(σ)2 , y3 + iy4 = eifr = eif(σ)r(σ) , (4.2)

x1 + ix2 = eiξ1
√

1− %2 = eiγτ
√

1− %(σ)2 , x3 + ix4 = eiξ2% = eiϕ(σ)%(σ) . (4.3)

We work in the conformal gauge and take the range of the spatial worldsheet coordinate

to be σ ∈ [−s/2, s/2]. The endpoints of the string are attached to D5-branes of the first

family, so the boundary conditions are the ones discussed in section 2. In the global

coordinates (2.1) used before, the D5-branes are placed at the azimuthal angle7 α0. When

expressed in the coordinates (4.1), the position of one of the D5-branes is given by % sin ξ2 =

cosα0 and the position of the other one by % sin(ξ2 − θ) = cosα0.

In what follows we will consider a string hanging between these two D5-branes sepa-

rated by an angle θ, as shown in figure 3. We also contemplate the case when the D5-branes

are separated by an angle φ in a sphere within AdS.

The ansatz (4.2)–(4.3), when plugged in the equations of motion and the Virasoro

constraints, leads to

`φ = r2f ′ , Dφ := −`2φ + (κ2 − 1)r2 + κ2r4 =
r2(r′)2

1 + r2
, (4.4)

`θ = %2ϕ′ , Dθ := −`2θ − (γ2 − 1)%2 + γ2%4 =
%2(%′)2

1− %2
, (4.5)

where Dφ and Dθ are short-hand notations. The span of the spatial worldsheet coordinate

can be obtained in terms of r(σ) or %(σ) by using either (4.4) or (4.5),

s

2
=

∫ rmax

r0

r dr√
1 + r2

√
Dφ

=

∫ %max

%0

% d%√
1− %2

√
Dθ

. (4.6)

7Defined with respect to different oblique axes.
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θ

%

0

1

ξ2

Figure 3. Schematically, we represent the coordinates % and ξ2 of the metric (4.1) as a cylinder.

In blue we draw the D5-branes separated by θ. In red, the string between them with large angular

momentum.

For a string with large angular momentum, rmax = cotα0 and %max = cosα0, while r0 and

%0 are the values of r and % at σ = 0. Since we have the boundary condition r′(0) = %′(0) =

0, they can be obtained from

0 = −`2φ + (κ2 − 1)r2
0 + κ2r4

0 , 0 = −`2θ − (γ2 − 1)%2
0 + γ2%4

0 . (4.7)

Here we will just focus on a solution with L very large. When the momentum L and

the energy E go to infinity, one has that %0, r0 → 0, that γ, κ → 1 and that `θ, `φ → 0.

Then, we will scale them as

κ = 1 + ε
cφ
2
, `φ = ε

ˆ̀
φ

2
, r(σ) =

√
εu(σ) , (4.8)

γ = 1 + ε
cθ
2
, `θ = ε

ˆ̀
θ

2
, %(σ) =

√
εv(σ) . (4.9)

The minimal values of the scaled variables become

u2
0 =
−cφ +

√
c2
φ + ˆ̀2

φ

2
, v2

0 =
cθ +

√
c2
θ + ˆ̀2

θ

2
. (4.10)

In the large L limit, the angular span of the string is given by the angular separation of

the D-branes, i.e. ∆f = π−φ and ∆ϕ = θ. By using (4.4) and (4.5), the separation angles

are then given in terms of r(σ) or %(σ), and to leading order in the small ε expansion we

have

π − φ =

∫ rmax

r0

2`φ dr

r
√

1 + r2
√
Dφ

=

∫ ∞
u0

ˆ̀
φ du

u
√

(u2−u2
0)(v2+v2

0 +cφ)
= − arctan(ˆ̀

φ/cφ) , (4.11)

θ =

∫ %max

%0

2`θ d%

%
√

1− %2
√
Dθ

=

∫ ∞
v0

ˆ̀
θ dv

v
√

(v2 − v2
0)(v2 + v2

0 − cθ)
= arctan(ˆ̀

θ/cθ) . (4.12)

Although there is some freedom in the choice of cθ and cφ, they are related since the

two integrals in (4.6) must agree. From the first integral, in the small ε limit we get

s

2
= log 4− 1

2
log
[
ε(2u2

0 + cφ)
]
− log

(
1 +

√
1 + r2

max

rmax

)
, (4.13)
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while from the second integral in (4.6) we obtain

s

2
= log 4− 1

2
log
[
ε(2v2

0 − cθ)
]
− log

(
1 +

√
1− %2

max

%max

)
. (4.14)

This implies, using (4.10), the relation√
c2
φ + ˆ̀2

φ,=

√
c2
θ + ˆ̀2

θ . (4.15)

Considering (4.11) and (4.12), we can simply take

cφ = cosφ , cθ = cos θ , (4.16)

which gives8

ε = 16e−s

(
%max

1 +
√

1− %2
max

)2

. (4.17)

As anticipated, we are interested in the difference between the energy and the angular

momentum of this configuration, given by

E − L = 4gκ

∫ rmax

r0

dr
r
√

1 + r2√
Dφ

− 4gγ

∫ %max

%0

d%
%
√

1− %2

√
Dθ

− 2At

∣∣∣∣
r=rmax

, (4.18)

where the last term comes from the boundary term due to the electric field. In the coor-

dinates we are using At = 2gr cosα0. As done is [10], we compute L − 2gs and E − 2gs

separately. To the next to leading order in the small ε expansion we have

L− 2gs =− 4g + g cos θε+ 4g
√

1− %2
max , (4.19)

E − 2gs =− 4g + g cosφε+ 4g
√

1 + r2
max − 4grmax %max . (4.20)

Given that
√

1 + r2
max − rmax %max −

√
1− %2

max = 0, terms which are independent of ε

cancel in the difference, as expected. Therefore we obtain

E − L = 16ge−s

(
%max

1 +
√

1− %2
max

)2

(cosφ− cos θ)

=
16g

e2−2 sinα0
tan2

(π
4
− α0

2

)
(cosφ− cos θ)e

− L
2g , (4.21)

where we used (4.19) to express s in terms of L.

For D5-branes of the second of the two families described in section 2, the computation

would follow analogously. We do not present the details here but just the result,

E − L =
16g

e2−2 cosφ0
tan2

(
φ0

2

)
(cosφ− cos θ)e

− L
2g . (4.22)

8The definition of ε here is different than the one in [10].
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4.2 Quantum string between oblique D5-branes in a pp-wave

The previous result is valid for a finite value of π
2 −α0, otherwise the semiclassical approx-

imation is no longer valid. A string attached to a α0 = π
2 maximal D5-brane and carrying

large angular momentum will be almost point-like. Thus, it will only probe the neighbor-

hood of a null-geodesic, that of a particle spinning around in the S5. Therefore, the lowest

states in the string spectrum will be those of an open string in a pp-wave background with

endpoints attached to a D5-brane that looks flat.

In the Penrose limit that zooms in on the null-geodesic [27, 28], the metric reduces to

ds2 = −4 du dv − z2du2 + d~z 2 , (4.23)

where ~z ∈ R8. The D5-brane becomes flat in this limit, sitting at z1 = z2 = z3 = 0 for the

coordinates coming from the AdS factor and at z5 = 0 for the coordinates coming from

the sphere.

If we consider an open string attached to the flat brane in the pp-wave background,

given that the brane is BPS the contribution to the vacuum energy of all the bosonic and

fermionic modes of the string cancels exactly. However, we would like to consider an open

string stretching between the previous D5-brane at z5 = 0 and another one that has been

rotated in the plane (z5, z6), i.e. sitting at cos θz5 + sin θz6 = 0. In other words, the string

still has Dirichlet and Neumann boundary conditions in z5 and z6 respectively, for the left

endpoint,9

z5 ∝
∑
n

a5
ne
iτωn sin knσ , (4.24)

z6 ∝
∑
n

a6
ne
iτωn cos knσ , (4.25)

where ωn =
√
m2 + k2

n for m = L
2πg . Now in order for the string to have rotated boundary

conditions in the right endpoint, we have to take kn = n∓ θ
π when a5

n = ±a6
n.

Analogously, the fermionic modes of the string will present similar shifts, but in their

case of ∓ θ
2π . As a consequence of all these shifts, the vacuum energy, or more precisely

E − L, will no longer vanish for the open string. We can simply compute E − L as the

difference between the contribution of modes with and without the shifts,

E − L=
1

2m

∞∑
n=−∞

√
m2 +

(
n− θ

π

)2

− 1

2m

∞∑
n=−∞

√
m2 + n2

− 2

m

∞∑
n=−∞

√
m2 +

(
n− θ

2π

)2

+
2

m

∞∑
n=−∞

√
m2 + n2, (4.26)

where the first and second lines come from bosonic and fermionic modes respectively. It is

convenient to introduce the notation

h(θ,m) :=
1

m

∞∑
n=−∞

√
m2 +

(
n− θ

π

)2

− 1

m

∞∑
n=−∞

√
m2 + n2 , (4.27)

9The omission of a normalization factor is indicated by ∝.
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which allows us to write

E − L =
1

2
h(θ,m)− 2h

(
θ

2
,m

)
. (4.28)

We first consider

1

m
∂m(m h) =

∞∑
n=−∞

1√
m2 +

(
n− θ

π

)2 −
∞∑

n=−∞

1√
m2 + n2

, (4.29)

and use Poisson’s resummation formula

∞∑
n=−∞

f(n) =
∞∑

k=−∞
f̃(k), (4.30)

where f̃ stands for the Fourier transform of f .10 Then

1

m
∂m(m h) =

∞∑
k=−∞

f̃(k)
(
e−2ikθ − 1

)
, (4.31)

for

f(x) =
1√

m2 + x2
=⇒ f̃(w) = 2K0 (2πm |w|) , (4.32)

where K0 is a modified Bessel function of the second kind. Now, we are only interested in

the large m = L
2πg limit of this resummation. For m large

f̃(k) ∼ e−2π|k|m√
|k|m

, (4.33)

and the sum is dominated by k = ±1. Thus,

1

m
∂m(m h) ∼ 2e−2πm

√
m

(cos 2θ − 1), (4.34)

which leads to

h(θ,m) ∼ −e
−2πm

π
√
m

(cos 2θ − 1) . (4.35)

Therefore

E − L ∼ − e
−2πm

2π
√
m

(cos 2θ − 1) + 2
e−2πm

π
√
m

(cos θ − 1) = −
√

2g

πL
e
−L
g (cos θ − 1)2 . (4.36)

If at the same time we consider that one of the D5-branes is rotated in the plane

(z3, z4) by an angle φ, the ωn corresponding to those bosonic coordinates will be shifted

10We use here the definition

f̃(w) =

∫ ∞
−∞

dx e−2πiwxf(x) .
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by n 7→ n ± φ
π . On the other hand, the fermionic modes’ frequencies will be shifted by

n 7→ n± ( θ
2π ±

φ
2π ), so

E − L=
1

2
h(φ,m) +

1

2
h(θ,m)− h

(
θ + φ

2
,m

)
− h

(
θ − φ

2
,m

)
∼−

√
2g

πL
e
−L
g (cos θ − cosφ)2 . (4.37)

An identical result is obtained for maximal D5-branes of the second family, when

φ0 → 0.

5 Boundary crossing condition

The two infinite families of D5-brane boundary conditions have something in common.

All of their members preserve the same underlying symmetry: a diagonal su(2|2) of the

usual su(2|2)2. Then, up to an overall factor, the reflection matrices are the same. In

other words, what we ignore about the corresponding scattering problems is restricted to

an undetermined reflection factor in each case. Furthermore, all these reflection factors are

constrained by a boundary crossing condition.

For a right boundary, the undetermined reflection factor R0(p), in all the cases we

consider, must satisfy the following crossing condition [10, 11]

R0(p)R0(p̄) = σ(p,−p̄)2 , (5.1)

where σ(p1, p2) is the bulk dressing factor [29, 30] and p̄ indicates a crossing transformation,

which takes a particle with energy and momentum (E, p) into a particle with energy and

momentum (−E,−p). The boundary factor should also satisfy the unitarity condition

R0(p)R0(−p) = 1 . (5.2)

We will use spectral parameters x± to describe the kinematics of a particle, so

x+

x−
= eip and x+ +

1

x+
− x− − 1

x−
=
i

g
. (5.3)

In terms of the spectral parameters, the crossing transformation is x± 7→ 1/x±.

In order to deal with a simpler crossing equation, we can write the reflection factor as

R0(p) =
1

σB(p)σ(p,−p)

1 + 1
(x−)2

1 + 1
(x+)2

 , (5.4)

where the only unknown is the boundary dressing factor σB(p). Then, crossing and uni-

tarity equations become

σB(p)σB(p̄) =
x− + 1

x−

x+ + 1
x+

, σB(p)σB(−p) = 1 . (5.5)
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A particular boundary dressing factor that solves the system (5.5), which we call here

σ0
B(p), was found in [10, 11],

σ0
B = eiχ

0
B(x+)−iχ0

B(x−) ,

iχ0
B(x) = iΦ0

B(x) =

∮
|z|=1

dz

2πi

1

x− z
log

{
sinh[2πg(z + 1

z )]

2πg(z + 1
z )

}
, |x| > 1 . (5.6)

In the strong coupling limit this solution reduces to the α0 → 0 limit of (3.19) and

the φ0 → π
2 limit of (3.25). However, to recover (3.19) and (3.25) in the general cases we

should look for new solutions of the same crossing and unitarity conditions (5.5). In order

to do that we will take σB(p) = σ0
B(p)σT (p). The unknown dressing factor σT satisfies

“trivial” crossing and unitarity conditions

σT (p)σT (p̄) = 1 , σT (p)σT (−p) = 1. (5.7)

As we shall see, there are infinitely many ways of solving the trivial system (5.7).

However, our analysis does not intend to be exhaustive. We will just observe that solutions

obtained in a particular way are compatible with all the strong coupling computations we

have presented in the previous sections.

We start by proposing σT to be of the form

σT (p) = eiχT (x+)−iχT (x−) , (5.8)

and use a contour integral, in analogy with (5.6), to define χT (x). In particular, in terms

of a generic function F we define

ΦF (x) = i

∮
|z|=1

dz

2πi

1

x− z
logF

(
z +

1

z

)
. (5.9)

We have taken the argument of the generic function to be z + 1
z , so that for any F the

contour integral satisfies

ΦF (x) + ΦF (1/x) = ΦF (0) . (5.10)

This property, analogue of the one discussed in [31] for the bulk dressing phase, will help

to fulfill the boundary crossing condition. For χT (x) we consider solutions of the form

χT (x) =

{
ΦF (x) if |x| > 1,

ΦF (x) + i logF
(
x+ 1

x

)
otherwise.

(5.11)

For this to give a solution of the trivial crossing condition we need

χT (x+)− χT (x−) + χT (1/x+)− χT (1/x−) = 0, (5.12)

and because of property (5.10) this simply implies

F

(
x+ +

1

x+

)
= F

(
x− +

1

x−

)
. (5.13)
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Using the constraint that relates the spectral parameters x±,

F

(
x− +

1

x−

)
= F

(
x− +

1

x−
+
i

g

)
. (5.14)

Thus, the trivial crossing equation is satisfied whenever F is periodic in the imaginary axes

with period i/g. Concerning unitarity, it would suffice to demand that χT (x) is an even

function, and it is straightforward to check that this is achieved whenever F has definite

parity, either odd or even.

Two natural possibilities are

F

(
z +

1

z

)
= sinh

[
2πng

(
z +

1

z

)]
or F

(
z +

1

z

)
= cosh

[
2πng

(
z +

1

z

)]
, (5.15)

for any integer n. However, the resulting reflection factors with these additional trivial so-

lutions to the crossing equation would not reproduce in general the desired strong coupling

behaviors (3.19) nor (3.25). Only the limits α0 → π
2 or φ0 → 0 of (3.19) and (3.25) can

be reproduced for either of these solutions when n = 1. If we moreover wanted to use the

resulting reflection factor to obtain the finite angular momentum correction (4.37), this

would only be possible with the sinh solution. Therefore, we would like to consider some

deformations of

Φsinh(x) = i

∮
|z|=1

dz

2πi

1

x− z
log

{
sinh

[
2πg

(
z +

1

z

)]}
, (5.16)

in order to obtain solutions whose g → ∞ limit is compatible with the explicit computa-

tions (3.19) and (3.25). To make a comparison with the explicit computations of section 3

we will evaluate the contribution to the reflection phase factor in the strong coupling limit

due to a given solution of the trivial crossing condition as

δT = χT (x−)− χT (x+) , (5.17)

for x± = e±ip/2 +O(1/g). The solutions of the crossing equation should be such that this

δT reproduces what we called δextra in section 3.

5.1 Contour integrals in re-scaled circles

We would like to deform somehow Φsinh in order to introduce a dependence with a param-

eter which may later be related to the amount of electromagnetic flux in the D5-branes

under consideration.

We will introduce a bold modification of Φsinh and check a posteriori it possess part

of the desired strong coupling dependence. In particular, the deformation we consider in

first place takes the contour of integration to be a circle of radius r,

Φr(x) = i

∮
|z|=r

dz

2πi

1

x− z
log

{
sinh

[
2πg

(
z +

1

z

)]}
. (5.18)

– 18 –



J
H
E
P
0
5
(
2
0
1
3
)
0
9
5

The property (5.10), which paves the way for solving the crossing condition, is no longer

valid for Φr. There is, nevertheless, a useful deformation of it,

Φr(x) + Φ1/r

(
1

x

)
= Φr(0) . (5.19)

Then, by combining two contour integrals of sizes r and 1
r in

ΦT (x) =
1

2

(
Φr(x) + Φ1/r(x)

)
, (5.20)

we obtain a function with the desired property

ΦT (x) + ΦT

(
1

x

)
= ΦT (0) . (5.21)

For definiteness we take 0 < r ≤ 1, and use the combination ΦT (x) to define χT (x) in the

region outside the circle of radius 1/r. From this region, we can analytically continue to

anywhere in the plane to have

χ
(1)
T (x) =


ΦT (x) |x| > 1/r ,

ΦT (x) + i
2 log sinh 2πg

(
x+ 1

x

)
r < |x| < 1/r ,

ΦT (x) + i log sinh 2πg
(
x+ 1

x

)
|x| < r .

(5.22)

If we now used relation (5.21) as before, we could check explicitly the trivial crossing

condition (5.12) is satisfied.

The solution to the trivial crossing equation from this χ
(1)
T is valid for all values of the

coupling g. However, when considered in the strong coupling limit, as we will see in what

follows, it can only explain one of the extra terms in the boundary reflection phase (3.24).

We have added (1) to indicate that.

Now, we want to describe what the resulting reflection phase factor would be for

particles with physical kinematics, i.e. with |x±| > 1, in the strong coupling limit. For

|x| > r we can expand (x − z)−1 as a geometric series in our definition of Φr(x), in order

to get

Φr(x) =
1

2πi

∞∑
n=1

cn(r)

xn
with cn(r) = i

∮
|z|=r

dz zn−1 log

{
sinh

[
2πg

(
z +

1

z

)]}
.

(5.23)

The imaginary part of the coefficients cn(r) can be seen to vanish, as well as the real part

whenever n is odd. The remaining coefficients can be evaluated in the strong coupling limit

g →∞, giving

c2k(r) = −8πg(−1)kr2k

(
r

1 + 2k
+

r−1

1− 2k

)
, (5.24)

which upon resummation leads to

Φr(x) = 4ig

(
x+

1

x

)
arctan

( r
x

)
+O(g0), (5.25)
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up to x-independent terms that will cancel when we compute the reflection phase factor.

Using the definitions of ΦT (x) and χT (x), as well as property (5.19), we can now evaluate

the reflection phase factor in the strong coupling limit due to this trivial crossing solution as

δ
(1)
T = −4g cos

p

2
log

r2 + 1 + 2r sin p
2

r2 + 1− 2r sin p
2

. (5.26)

Now, if we take

r = cot

(
φ0

2
+
π

4

)
, (5.27)

we obtain

δ
(1)
T = −4g cos

p

2
log

1 + cosφ0 sin p
2

1− cosφ0 sin p
2

. (5.28)

This is only one of the extra terms in the boundary reflection phase (3.24), more precisely

the first one. The other terms also need to be explained in terms of solutions to the trivial

crossing and unitarity conditions. For instance, if we consider

χ
(2)
T (x) = f2 (φ0, g) log

x r + 1/x r

x/r + r/x
, (5.29)

with r defined in (5.27), we see that the resulting σ
(2)
T (p) satisfies the trivial crossing

equation as well as the unitarity condition, while contributing in the strong coupling limit

to the reflection phase factor in

δ
(2)
T = 2f2 (φ0, g) log

i− sinφ0 tan p
2

i+ sinφ0 tan p
2

= 4if2 (φ0, g) arctan
(

sinφ0 tan
p

2

)
. (5.30)

This corresponds to the second extra term in the reflection phase factor calculated in

section 3.2 whenever f2 (φ0, g) behaves like 2gi tanφ0 in the strong coupling limit.

The same can be done to take into account the third extra term in the reflection phase

factor, by simply taking

χ
(3)
T (x) = f3(φ0, g) log x , (5.31)

with a suitable g →∞ limit for f3(φ0, g), namely f3(φ0, g) ∼ 4gi

(
1

cosφ0

− cosφ0

)
.

5.2 Line integrals in arcs

We will now consider another way in which we can modify our initial proposal Φsinh. We

shall consider

Φγ(x) = i

∫
C(γ)

dz

2πi

1

x− z
log

{
sinh

[
2πg

(
z +

1

z

)]}
, (5.32)

for an open curve C(γ) parameterized by z(t) = eit with −γ < t < γ and π − γ < t <

π + γ. Because this curve is invariant under z 7→ 1/z and we use a function of z + 1
z

only, property (5.10) will hold. Being defined as an integration along an open curve, we

may propose that χT is defined by just the line integral outside as well as inside the unit

disk. Then, property (5.10) would suffice to conclude that (5.32) solves the trivial crossing
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equation. It is not, however, an even function of x, so in order to satisfy the unitarity

condition we can define χT (x) = 1
2(Φγ(x) + Φγ(−x)).

A strong coupling analysis of this proposal for |x| > 1 can be performed along the lines

of the previous section, and we obtain

χ
(1)
T (x)=

1

2πi

∞∑
k=1

c2k(γ)

x2k
with c2k(γ)=−16πg

2k cos γ sin(2kγ)−sin γ cos(2kγ)

4k2 − 1
(5.33)

up to subleading terms in the limit g → ∞. This gives, up to x-independent terms that

will cancel when we compute the reflection phase factor,

χ
(1)
T (x) = 2g

(
x+

1

x

)(
arctanh

eiγ

x
− arctanh

e−iγ

x

)
+O(g0). (5.34)

As before, the (1) indicates this solution to the trivial crossing condition would explain only

the first term in (3.17). To see this we evaluate the reflection phase factor corresponding

to this solution of the crossing equation,

δ
(1)
T = −4g cos

p

2
log

∣∣∣∣sin p
2 + sin γ

sin p
2 − sin γ

∣∣∣∣ . (5.35)

If we identify γ = α0, this is the first extra term in the boundary reflection phase (3.19).

In order to explain the second term we can propose

χ
(2)
T (x) = f(α0, g) log

∣∣∣∣∣e−iα0x− eiα0
x

eiα0x− e−iα0
x

∣∣∣∣∣ , (5.36)

which is a solution of the trivial crossing and unitarity conditions and leads to

δ
(2)
T = 2f(α0, g) log

∣∣∣∣sin(p2 + α0)

sin(p2 − α0)

∣∣∣∣ . (5.37)

This would be the second extra term in (3.19) for any f(α0, g) whose strong coupling limit

is 2g cosα0.

As remarked before, terms (5.35) and (5.37) of the resulting reflection phase become

logarithmically divergent as p → ±2α0, but they cancel for the proposed limiting value

of f(α0, g). In the exact χ
(1)
T and χ

(2)
T proposals these correspond to the logarithmic

divergencies when x→ ±e±α0 . In particular, the logarithmic divergence of χ
(1)
T (x) appears

when x is evaluated at the endpoints of C(α0).

The choice f(α0, g) = g cosα0 +O(g0), necessary to match the explicit strong coupling

computation, ensures nevertheless that χT is regular in that limit. If we require that χT
continues to be regular at x = ±e±α0 to all orders in 1/g, this would allow us to determine

f(α0, g) exactly. In order to do this, we first observe that the proposal (5.36) can also take

the form of an integration along C(α0), namely

χ
(2)
T (x) = −f(α0, g)

∫
C(α0)

dz

x− z
, (5.38)
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up to x-independent terms that will cancel when we compute σT . Then we can write χT as

a single integration along C(α0). For the integral to be regular for x = ±e±α0 , we should

demand that the factor accompanying (x− z)−1 vanishes as z approaches the endpoints of

the curve. This fixes f(α0, g) to be

2πf(α0, g) = log [sinh (4πg cosα0)] , (5.39)

which in turn means that we can write

χT (x) = i

∫
C(α0)

dz

4πi

(
1

x− z
+

1

−x− z

)
log

[
sinh

(
2πg

(
z + 1

z

))
sinh (4πg cosα0)

]
. (5.40)

Note that this deformation, just as the one presented in the previous section when

r → 1, reduces to Φsinh when α0 → π
2 .11 In this limit it is in fact convenient to consider

the full quantities

σB(p) = σ0
B(p)σT (p) = eiχB(x+)−iχB(x−) with χB(x) = χ0

B(x) + χT (x) , (5.41)

where

ΦB(x) = i

∮
|z|=1

dz

2πi

log
[
2πg

(
z + 1

z

)]
x− z

, (5.42)

and χB(x) = ΦB(x) for |x| > 1, and an additional term i log
[
2πg

(
x+ 1

x

)]
should be added

to ensure continuity if |x| < 1. As expected, the contribution to the reflection phase δ from

this σB is order g0 rather than order g.

5.3 Further verifications from Lüscher computations

So far we have compared the strong coupling limit of some solutions to the crossing equation

with explicit computations of the boundary reflection phase factors performed in section 3.

We can also use the results of section 4 to further test compatible solutions of the

crossing equation. Computations of section 4 should be interpreted as leading finite angular

momentum corrections to the value of E−L for open strings between D5-branes at angles.

Then, we should be able to reproduce those results by a Lüscher computation. Since

Lüscher computations depend on an analytic continuation of the boundary reflection phase

factors, we can use this to further restrict which solutions to the crossing equation are

admissible for the reflection phase factors.

The boundary Lüscher correction [32] can be obtained from

E − L ∼ −
∞∑
a=1

∫ ∞
0

dq

2π
log
[
1 + e−2LẼa(q)ta(q)

]
, (5.43)

where

ta(q) = σBσ̄B

(
z[−a]

z[+a]

)2 [
2(−1)a(cosφ− cos θ)

sin aφ

sinφ

]2

, (5.44)

11When α0 → π
2

the curve C(α0) closes to form the unit circle and the contribution of χ
(2)
T vanishes.
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and

Ẽa(q) = 2 arcsinh

(√
a2 + q2

4g

)
. (5.45)

In the equation for ta(q), σB and σ̄B are shorthand notations for

σB := σB

(
z[+a], z[−a]

)
σ̄B := σB

(
− 1

z[−a]
,− 1

z[+a]

)
, (5.46)

and

z[±a] =
q + ia

4g

(√
1 +

16g2

a2 + q2
± 1

)
(5.47)

are the spectral parameters of particles with mirror kinematics. Therefore, the Lüscher

computation in the present cases will be almost the same as the one discussed in [10, 11],

except for a different boundary phase factor σB.

We will evaluate (5.43) in the limit 1 � g � L, where Ẽa(q) ∼
√
a2+q2

2g , so that the

integration will be dominated by the region q � 1, and the sum over a will therefore always

be dominated by the a = 1 term. If, as in the case of the fundamental Wilson loop, the

quantity σBσ̄B had a double pole, the leading Lüscher correction would be dominated by

a single mirror-particle exchange [33], as in the case discussed in [10, 11],

E − L ∼ −1

2
e
− L

2g

√
(q2t1(q))|q=0 . (5.48)

On the other hand, if σBσ̄B goes to a constant as q → 0, the leading Lüscher correction

would be dominated by a pair of mirror-particles exchange and

E − L ∼ −
∫ ∞

0

dq

2π
e−2LẼ1(q)t1(q) ∼ − t1(0)

4
e
−L
g

√
2g

Lπ
. (5.49)

Recall that we have written σB = σ0
BσT where σ0

B is the fundamental representation

boundary dressing factor, which has a pole, and σT is a solution of the trivial crossing

equation. Then, depending on how σT σ̄T behaves as q goes to zero, we can face any of

the two possibilities mentioned above: if σT σ̄T goes to a non-vanishing constant σBσ̄B
continues to have a double pole; on the other hand, if σT σ̄T has a double zero as q → 0,

this shall cancel the double pole in σ0
Bσ̄

0
B and leave us with a regular σBσ̄B at q = 0.

A glance at the leading finite angular corrections (4.21)–(4.22) and (4.37) leads us to

expect that σBσ̄B should have a double pole in the general case but become regular as

α0 → π
2 or φ0 → 0.

To analyze this, we evaluate σT σ̄T defined in terms of the χT introduced in sections 5.1

and 5.2, as q goes to 0 and in the limit g →∞, that is, we want to evaluate

σT σ̄T = ei[χT (z[+a])−χT (z[−a])+χT (−1/z[−a])−χT (−1/z[+a])] . (5.50)

Let us consider first the χT obtained in section 5.1, which is the sum of the solutions

to the trivial crossing equation (5.22), (5.29) and (5.31), χT = χ
(1)
T + χ

(2)
T + χ

(3)
T . Because
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z[±a] → i as q → 0, we have to use r <
∣∣z[±a]

∣∣ < 1/r in the definition (5.22). The case

r = 1, i.e. φ0 = 0, degenerates and will be studied separately.

The extra terms in the definition (5.22) cancel exactly, so we only need to deal with

contour integrals ΦT . Then if we use property (5.19), we get

σT σ̄T |q=0 = ei[Φr(z
[+a])−Φr(1/z[+a])+Φr(1/z[−a])−Φr(z[−a])]σ

(2)
T σ̄

(2)
T σ

(3)
T σ̄

(3)
T

∣∣∣
q=0

. (5.51)

For all the terms, the argument of Φr has norm greater than r in the q → 0 limit, so we

can use (5.25) to evaluate them in the strong coupling limit. For 0 < φ0 <
π
2 we see that

σT σ̄T is regular at q = 0 in this limit, giving us

σT σ̄T |q=0 ∼ tan

(
φ0

2

)4a

e4a cosφ0 . (5.52)

Thus, for non-vanishing φ0, σBσ̄B continues to have the double pole. Then the Lüscher re-

sult in the limit 1� g � L will acquire an extra factor of tan
(
φ0
2

)2
e2 cosφ0 in comparison

with that of [10], leading to

E − L ∼ 16g

e2−2 cosφ0
(cosφ− cos θ) tan2

(
φ0

2

)
e
− L

2g , (5.53)

which is exactly (4.22).

We now turn to a similar Lüscher computation, but employing this time χT = χ
(1)
T +χ

(2)
T

presented in section 5.2. Let us focus for the moment on the contribution coming from the

line integral. In this case, since

z0 := z[+a]
∣∣∣
q=0

= − 1

z[−a]

∣∣∣∣
q=0

, (5.54)

approaches to i in the large g limit, we cannot just use (5.34) for the Lüscher computation.

Instead, we consider

σ
(1)
T σ̄

(1)
T

∣∣∣
q=0

= ei[Φγ(z0)−Φγ(1/z0)+Φγ(−z0)−Φγ(−1/z0)] , (5.55)

with

log

(
σ

(1)
T σ̄

(1)
T

∣∣∣
q=0

)
=

∫
C(γ)

dz

2πi

2z(1− z4
0)

(z2 − z2
0)(1− z2z2

0)
log

{
sinh

[
2πg

(
z +

1

z

)]}
. (5.56)

In this expression it is safe to take the large g limit before integrating. We get

log

(
σ

(1)
T σ̄

(1)
T

∣∣∣
q=0

)
= −4a

γ∫
0

1

cos t
+O(1/g)

= 4a log
[
tan

(π
4
− γ

2

)]
+O(1/g). (5.57)
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We should recall that γ = α0 in this case. The contribution from χ
(2)
T can be directly

evaluated using its definition (5.36). The total contribution of σT is

σT σ̄T |q=0 ∼ tan
(π

4
− α0

2

)4a
e4a sinα0 , (5.58)

and the full Lüscher result in the limit 1� g � L will be

E − L ∼ 16g

e2−2 sinα0
(cosφ− cos θ) tan2

(π
4
− α0

2

)
e
− L

2g , (5.59)

which coincides with the explicit computation (4.21).

Let us conclude this section with the Lüscher computation in the cases φ0 = 0 and

α0 = π
2 . For both of them the proposed boundary dressing factor is given by (5.41)–(5.42).

As we anticipated, for the Lüscher computation to agree with the explicit result (4.37),

σBσ̄B has to be regular at q = 0.12 Then,

E − L ∼ − t1(0)

4
e
−L
g

√
2g

Lπ
∼ −

√
2g

πL
e
−L
g (cos θ − cosφ)2 σBσ̄B|q=0 , (5.60)

which would agree with (4.37) provided σBσ̄B|q=0 = 1. To see this is indeed the case, we

write

σBσ̄B|q=0 = e2i[χB(z0)−χB(−1/z0)] = 4π2g2

(
z0 +

1

z0

)2

e2i[ΦB(z0)−ΦB(−1/z0)], (5.61)

where z0 is as defined in (5.54). We have

ΦB(z0)− ΦB (−1/z0) = i

∮
|z|=1

dz

2πi

z2
0 + 1

(z0 − z) (z0 z + 1)
log

[
2πg

(
z +

1

z

)]
(5.62)

=
2i

π

(
z4

0 − 1
) ∫ π/2

0

log (4πig sin t)(
z2

0 + 1
)2 − 4z2

0 sin2 t
dt. (5.63)

This time, we should do the integral before considering the large g limit. The result of the

integral is quite complicated, but at the end of the day we get

e2i[ΦB(z0)−ΦB(−1/z0)] = − 1

a2π2
+O(1/g) , (5.64)

which, altogether with the other factor in (5.61), leads to σBσ̄B|q=0 = 1 as expected.

6 Conclusions

We have studied the scattering problem for excitations along open strings ending on certain

D5-branes. We have considered two kinds of D5-branes: with worldvolume AdS2×S4 and

12At this point it becomes evident that the cosh solution of (5.15) is not suitable. The additional term in

the definition of χB for |x| < 1 would in this case be i log
{

2πg
(
x+ 1

x

)
cot
[
2πg

(
x+ 1

x

)]}
and σBσ̄B would

continue to have a double pole.
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some electric field and with worldvolume AdS4×S2 and some magnetic field. The D5-

branes of the first type are the dual description of 1
2 -BPS Wilson loops in the k-th rank

antisymmetric representation of the SU(N) in N = 4 super Yang-Mills theory. The D5-

branes of the second type provide the dual description of a conformal field theory with

fundamental hypermultiplets on a 2+1-dimensional defect, with some of the fundamental

fields having a vacuum expectation value.

The exact determination of reflection matrices would allow in one case the exact com-

putation of expectation values of deformations of the antisymmetric representation 1
2 -BPS

Wilson loops, by insertions of composite operators in the adjoint representation. In the

other case it would allow the exact description of the spectral problem in the defect confor-

mal field theory. The underlying symmetry, in both cases a diagonal su(2|2) of the usual

su(2|2)2, fixes the matrix structure, the asymptotic nested Bethe equations and the ther-

modynamic Bethe ansatz system [5, 10, 11]. All this is up to a reflection phase factor σB,

which is a function of the momentum of the reflected particles and the coupling constant g.

In this article we have precisely studied σB for the D5-branes mentioned above. In

first place, we have explicitly computed σB in the strong coupling limit, by relating it to

the time delay of reflected worldsheet solitons. For the two cases under study these explicit

results can be found in subsections 3.1 and 3.2. We proceeded in section 4 with the explicit

computation of E − L to leading order in L large but finite in the strong coupling limit,

for open strings between D5-branes at angles. These are also useful results given that, by

means of a Lüscher computation, they can be related to certain analytic continuation of σB.

Finally, in section 5 we have studied solutions to the crossing and unitarity conditions

that all the reflection factors σB must satisfy. There are infinitely many solutions to these

equations. However, we have singled out some solutions consistent with all the explicit

computations of sections 3 and 4. The boundary reflection factor can always be written as

R0(p) =
1

σ0
B(p)σT (p)σ(p,−p)

1 + 1
(x−)2

1 + 1
(x+)2

 , (6.1)

where σ0
B is the boundary dressing phase (5.6) proposed in [10, 11] and σT = eiχT (x+)−iχT (x−)

is an extra boundary dressing factor that solves the system (5.7). For the D5-branes of the

first family, dual to 1
2 -BPS Wilson loops in antisymmetric representations, we propose

χT (x) = i

∫
C(α0)

dz

4πi

(
1

x− z
+

1

−x− z

)
log

[
sinh

(
2πg

(
z + 1

z

))
sinh (4πg cosα0)

]
, (6.2)

with C(α0) parameterized by z(t) = eit with −α0 < t < α0 and π − α0 < t < π + α0. In

the proposal for this case the dependence on the coupling constant g is fully fixed.

On the other hand, for D5-branes of the second family we have

χT (x) = i

∮
|z|=r

dz

4πi

log
{

sinh
[
2πg

(
z + 1

z

)]}
x− z

+ i

∮
|z|=1/r

dz

4πi

log
{

sinh
[
2πg

(
z + 1

z

)]}
x− z

+ f2(φ0, g) log
xr + 1/xr

x/r + r/x
+ f3(φ0, g) log x (6.3)
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for |x| > 1/r, and additional terms should be added as in (5.22) when |x| < 1/r. In this

proposal, some functions of the coupling are only determined to leading order in g, since we

lack an argument similar to the one that allowed us to fix the corresponding undetermined

function in the previous case.

For the boundary dressing factors proposed here we had to distinguish between two

regimes: when α0 or φ0 take generic values and (6.2) and (6.3) are valid, and when α0 = π
2

or φ0 = 0 (and the spherical factors of the D5-branes are maximal). For the latter cases,

our proposals become

χT (x) = i

∮
|z|=1

dz

2πi

log
{

sinh
[
2πg

(
z + 1

z

)]}
x− z

for |x| > 1 . (6.4)

which cancels an identical term in χ0
B and the complete dressing is given in terms of

χB(x) = i

∮
|z|=1

dz

2πi

log
[
2πg

(
z + 1

z

)]
x− z

for |x| > 1 . (6.5)

This solution to the crossing and unitarity conditions for maximal D5-branes is also

determined for all values of the coupling. In this case, the verification of the Lüscher

computation only required that, for mirror kinematics, σBσ̄B|q=0 = 1. The Poisson resum-

mation required to compute E − L for the ground state of an open string in a pp-wave is

essentially the same as the Lüscher computation (5.49) when the corrections are dominated

by the exchange of a pair of mirror particles. In first place the Lüscher formula (5.43) is

derived by treating the exchanged particles between the boundary states as free. Then,

the fact that the Poisson sum is dominated by the terms with k = ±1, (4.34), is the same

as the Lüscher computation (5.43) being dominated by a pair of mirror particles exchange.

An interesting aspect of the Lüscher computations in these two regimes is that for

generic D5-branes the leading finite angular momentum correction is order e−L/2g, while

for maximal D5-branes it is order e−L/g. This was understood in terms of the proposed

boundary dressing factors σB which degenerate in the maximal D5-brane limit and no

longer possess the pole that explained the order e−L/2g in the generic case.

A natural direction for a future work complementing our results would be to study the

dressing factors σB in the weak coupling limit. This would provide more verifications and

could shed more light on the undetermined functions in (6.3).
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