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ABSTRACT: Hierarchical porous polymer systems are increasingly applied to catalysis, bioengineering or sepa-

ration technology due to the versatility provided by the connection of mesopores with percolating macroporous 

structures. Nuclear magnetic resonance (NMR) is a suitable technique for the study of such systems as it can de-

tect signals stemming from the confined liquid and translate this information into pore size, molecular mobility 

and liquid-surface interactions. We focus on the properties of water confined in macroporous polymers of eth-

ylene glycol dimethacrylate and 2-hydroxyethyl methacrylate [poly(EGDMA-co-HEMA)] with different amounts 

of cross-linker, in which a substantial variation of hydroxyl groups is achieved. As soft polymer scaffold may 

swell upon saturation with determined liquids, the use of NMR is particularly important as it measures the system 

in its operational state. This study combines different NMR techniques to obtain information on surface interac-

tions of water with hydrophilic polymer chains. A transition from a surface induced relaxation in which relaxivity 

depends on the pore size to a regime where the organic pore surface strongly restricts water diffusion is observed. 

Surface affinities are defined through the molecular residence times near the network surface. 
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1. INTRODUCTION 

The transport properties of fluids imbibed in a porous media play a key role in several research areas, and deter-

mine the efficiency of processes such as catalysis
1, 2, 3

 separation,
4, 5

 energy
6
 and bioengineering.

7, 8
 Determination 

of accurate morphological features of porous media is a current challenge to material scientists, as many proper-

ties of stationary supports depend not only on the void sizes distribution but also on their connectivity and liquid 

surface interactions. Porous polymeric scaffolds have a wide range of applications and can be prepared with a 

controlled hierarchy of micro-, meso-, and macroporous spatial domains.
9, 10, 11, 12

 Because of the hydrophilic 

characteristic of these materials, water not only diffuses into pore structures, but also swells the network develop-

ing a layer of gel inside the material. A gel phase usually exhibits a better performance in terms of accessibility to 

specific active sites on the surface,
13

 however its mechanical properties hinder the span of possible applications. 

The possibility to generate porous polymers with a gel fraction thus enhances the material performance by com-

bining the gel properties with the great surface to volume ratio provided by the porous structure.  

As the properties of a functional composite depend on a multitude of processes, which occur over a wide spec-

trum of length and time scales, complementary use of different techniques may be required for a comprehensive 

characterization. Indirect methods, as nitrogen absorption, mercury porosimetry, small angle X-ray, or neutron 

scattering, provide average information, while imaging methods provide a direct measure of microstructural 

properties.
14

 In particular 3D focused ion beam scanning electron microscopy (FIB-SEM) has been successfully 

applied to porous polymers with high imaging resolution.
15, 16

 These methods provide information of the dry state 

and may additionally affect the pore structure, for instance, mercury intrusion relies on monitoring changes in 

pressure as the system is flooded which may induce changes in the morphology for soft polymers. Additionally, 

when the porous media is saturated with a fluid which is able to swell the polymer, changes in the porosity can be 

expected.
10

 

Nuclear magnetic resonance (NMR) is a suitable technique for the study of molecular dynamics of different liq-

uids confined in porous matrices. Several methods based on monitoring the restricted diffusion of liquid mole-

cules confined in a porous matrix, and their relaxation properties render information of void size, pore intercon-

nectivity and liquid-surface interactions.
17, 18, 19

 For liquids contained in a pore, it is expected that two contribu-

tions are present, a layer that strongly interacts with the surface and a more mobile fraction. This effect has been 

quantified for a water interacting with a variety of inorganic porous systems in the nanoscale range, nanoparticles 

and biomolecules, 
20, 21

 and experimentally shown for confined water or ionic liquids.
22, 23, 24

  NMR relaxation 

times measurements have been widely used to study molecular dynamics of liquids imbibed in porous media. 

Brownstein and Tarr
25, 26

 have demonstrated that the longitudinal (T1) and transversal (T2) relaxation times charac-

terize the pores since they are proportional to the surface to volume (S/V) ratio. Considering that the decay of the 

magnetization is due to diffusion, the relaxation time corresponds to the time taken to migrate across the pore, 

where each spin that encounters the wall is lost by relaxation.
17

 Relaxation is given by two factors, the S/V and 

surface relaxivity parameter	�:		���� = �� 		/�, with i=1,2. If the system dimension is known, the relaxation times 
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may be used to infer liquid-surface properties through the determination of ��.	 In order to combine this infor-

mation, it is desirable to determine the pore size in the same conditions as the relaxation measurements are carried 

out. A powerful non-invasive approach to determine void sizes by NMR was introduced by Song et al.
27

 It relies 

on the fact that small distortions in the magnetic field appear within a heterogeneous sample due to variations in 

the local magnetic field susceptibilities between the solid matrix and the confined liquid. A signal loss is produced 

as a liquid molecule diffuses through these internal magnetic field gradients, which can be readily used to obtain 

information on the pore dimension. This experiment is referred to as DDIF (Decay due to Diffusion in the Inter-

nal Field).
27, 28, 29

 A combination of DDIF with frequency dependent T1 measurements has been applied to study 

surface relaxivity in porous ceramics
30

 and in combination with T2 in rock cores with different lithologies at low 

magnetic fields.
31

 

Relaxation times may additionally be affected by the interaction of the fluid with the porous matrix, where the 

interplay of surface relaxation and pore structure is governed by the fluids’ molecular dynamics. Fast Field Cy-

cling (FFC) relaxometry
32

 has proven to be an ideal tool to extract this information in a wide range of characteris-

tic times, where fluctuations of the spin interactions with correlation times up to eight orders of magnitude greater 

than those of the bulk liquid are found. When a molecule adsorbs from solution to the wall surface, it adopts pref-

erential orientations relative to the local pore surface. Once a molecule desorbs it may diffuse into the bulk; how-

ever, under strong adsorbing conditions it may be reabsorbed, experiencing a flight close to the surface. This re-

laxation mechanism is known as reorientations mediated by translational displacements (RMTD)
33

 and has been 

applied,  for instance, to describe molecular displacements of helicogenic peptides on hydrophilic fused silica 

surfaces using single molecule fluorescence microscopy.
34

 Besides probing the surface topology by molecular 

reorientations, a molecule diffusing near the pore wall surface may interact with specific sites that induce an addi-

tional relaxation mechanism. For paramagnetic sites a model that takes into account the molecular surface resi-

dence time and the interval in which a molecule encounters a relaxation site was introduced by Korb et al.
35, 36

 

This model has been successfully applied for the study of catalysts surface interactions with different liquids.
37

  

Applications of these NMR techniques, either stand alone or combined, are used in different research fields main-

ly in inorganic matrices such as those found in the oil industry,
38, 39

 cement paste research,
40, 41

 study of soil per-

meability
42

 and in the field of catalysis.
37

 However, there is a surprisingly low amount of researches on NMR 

applied to organic porous systems. In this work we study liquid-surface interactions for water confined in a po-

rous polymeric system, which is composed by macroporous polymer beads that can develop a permanent porous 

structure even in the dry state. We combine different NMR techniques to study the behavior of confined water. 

The distribution of pore size determined with the DDIF sequence, combined with relaxation measurements indi-

cates that surface relaxation follows the theory proposed by Brownstein and Tarr in the entire porous network, 

except for water in close contact with the polymer mesh. In this case, strong interactions with superficial hydroxyl 

groups render RMTD. With the aid of frequency dependent experiments, the characteristic molecular hopping and 
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residence times at the pore surface are obtained. We observe that the surface residence times greatly increase 

when the networks swell, developing a gel fraction. 

2. MATERIALS AND METHODS 

2.1 Porous Polymeric Networks. Polymer beads with hierarchical pore structure of ethylene glycol dimethacry-

late and 2-hydroxyethyl methacrylate [poly(EGDMA-co-HEMA)] were synthesized as previously described.
43

 In 

order to obtain 10 g of dry polymer, 3 mol (6.2 mL) of HEMA, 1 mol (3.2 mL) of the cross-linker EGDMA and 

9.3 mol (17 mL) of porogenic agent cyclohexane were stirred at 85ºC in 77 mL of water. Benzoyl peroxide 

(BPO), Riedel de Häen-Germany, (0.411 g, 2.44 mol%) was added as free-radical initiator and poly(vinyl pyrroli-

done)(PVP), Kollidone 90, Fluka-Switzerland, was used as suspension stabilizer. Different polymeric networks 

were obtained varying the cross-linker content of 6, 10, 17, 25 and 33 mol% of EGDMA. The resulting polymer 

beads were washed with distilled water and afterwards with ethanol. Samples were then dried in an oven at 70 °C, 

at ambient pressure, until constant mass was reached.  

The resulting system consists of polymer beads that contain large agglomerates of microspheres (100 - 200 nm) 

as shown in Scheme 1.
10, 44

 Each microsphere consists in turn of smaller nuclei (10 - 20 nm) which are nonporous 

and represent the most highly cross-linked regions of the system. The nuclei are blended to some extent, leaving 

an inter-space which is mainly responsible for the great surface to volume ratio of this type of material. The cavi-

ties between the microspheres render a second type of intermediate void. Finally, larger pores are generated when 

the microspheres are agglomerated into larger irregular entities in the polymer material. Since the proportion of 

used monomer affects the matrix polarity, the interaction of water with different polymer systems is expected to 

change together with the amount of cross-linker. HEMA has a hydroxyl and ester functional group, while 

EGDMA only an ester group. Both monomers are able to form hydrogen bonds with water molecules through the 

carbonyl or hydroxyl group, but only HEMA can act as hydrogen donor. Since the total amount of monomers is 

constant for all networks, an increase in cross-linker implies that the content of HEMA or hydroxyl groups in the 

polymer network decreases (see Scheme 1). Consequently the hydrophilicity of the matrix is modified from a 

more hydrophilic (6 mol % of cross-linker) to a less hydrophilic one (33 mol % of cross-linker).  

 

2.2 NMR Experiments. Small samples of polymer beads were immersed in a vial containing distilled water at 

room temperature for 24 h in order to reach the full swelling of the network. Samples of 75 mg weight were ex-

tracted from the vial and gently placed in a 5 mm outer diameter NMR sample holder and sealed to avoid evapo-

ration. Each sample was prepared five times and measured in independent experiments. All experiments were 

carried out at 30 ºC and ambient pressure. Pore size determination and 2D relaxation maps were acquired with a 

Magritek Kea2 spectrometer operating at 60 MHz for protons. A 1.4 T permanent magnet (Varian EM 360) 

equipped with a homemade probe was used. In the DDIF sequence the encoding time was set to te= 0.5 ms and tD 

ranged from 0.5 ms to 4 s in 32 logarithmically increased steps. D = 2.6×10
-9 

m
2
/s for bulk water was consid-
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ered.
45

 For the T1-T2 maps, T1 was encoded in the indirect dimension with an inversion-recovery sequence in 50 

time steps and T2 with the multipulse Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, where the echo-time 

(tE = 0.5 ms) is set short enough to mitigate diffusion effects, and the acquisition of 6000 echoes. Fast Field Cy-

cling experiments were carried out in a Stelar Spinmaster FFC2000 1T C/DC relaxometer at 30ºC with frequen-

cies ranging from 0.01 to 20 MHz. Data corresponding to 60 MHz and 300 MHz were included in the relaxation 

profiles. The latter were acquired with a Bruker Avance II console using a DOTY DSI-703 proton dedicated 

probe with proton background signal reduction. Diffusion measurements were carried out with a PM5 NMR-

MOUSE from Magritek GmbH, with a static magnetic field gradient of 23.5 T/m using a stimulated echo pulse 

sequence, with a diffusion time of ∆ = 1 ms. 

3. RESULTS AND DISCUSSION 

3.1 Pore Size Characterization. Pore size distributions (PSD) were obtained by using the DDIF sequence. This 

sequence relies on the acquisition of a stimulated echo; where a short encoding period te is used to map the local 

gradient fields, followed by a diffusion period tD in which diffusion through the internal fields takes place.
27, 28

 

The decay on the echo intensity as a function of tD is compared to a reference signal, which monitors relaxation 

due to T1. For a detailed description of the method see ref.
29

 Subtraction of both signals renders a data set with a 

characteristic decay time τ that is related to the pore diameter by the following expression:	 = 	�√��; where D 

is the diffusion coefficient of bulk water and the pores are assumed to have a spherical shape. When a distribution 

of pore size is present, different τ values can be extracted from the signal decay by application of an Inverse La-

place Transformation (ILT) algorithm. Typical accessible pore sizes that can be probed with water at room tem-

perature are in the order of 1 µm - 500 µm. For the highly cross-linked polymer networks three distinct void di-

mensions are observed. Large pores (P1) correspond to void spaces between agglomerated microspheres, with a 

mean diameter of 90 µm (see Fig. 1). A second pore size (P2) of 35 µm is assigned to the inter-space between the 

microspheres, and a third population (P3), with an apparent diameter of 10 µm. The determination of this last 

cavity size corresponds to signals arising from water in close contact with the polymer chains, via hydrogen 

bonds with surface OH groups, and probably a layer of structured water also contributes to this signal. Previous 

experiments have shown that this type of water does not evaporate from the system at ambient temperature and 

pressure.
46

 As the amount of cross-linker is reduced the system increases its ability to swell. This leads to a 

change in the size distribution of the polymer beads, which affects the overall pore size distribution. The change 

in the overall porosity of the system was reported by means of gravimetric experiments
10

 as well as the changes in 

the individual T2 values for water contained in each pore.
46, 47

 A maximum in the diameter of P2 is observed for 17 

mol % of EGDMA content. For lower cross-linker content, the primary particles suffer deformations rendering a 

collapse in the pore structure. This is evidenced by the decrease in pore size of P2 as well as the presence of large 

pores (Ps) of around 70 µm, which are assigned to water contained in the swollen polymer matrix, where a gel 

phase is developed. The values of P1 present a large dispersion as these are susceptible to the packing condition in 

Page 5 of 19

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 

 

the NMR sample holder. A representative curve of the PSD for networks with 33 mol % of EGDMA content is 

shown in Fig. 1b. The relative amount of water in the different cavities for networks prepared with 33 mol % of 

EGDMA content was determined to be of 60 % for pores P1; more than 35 % for pores P2 and c.a. 5 % for water 

corresponding to population P3. Similar values were obtained for all samples.  

 

3.2 Surface Relaxation. Surface relaxation is in general investigated by inspection of the T1/T2 ratio, as this pa-

rameter is sensitive to molecular dynamics. T1 and T2 have different dependencies on rotational and translational 

motions, consequently, the ratio T1/T2 is considered to be analogous to the energy of adsorption on a surface or 

the surface interaction strength.
48

 Relaxation rates are dependent on the magnetic field, in particular at high fields 

a collapse into a single T1 relaxation value is observed for the contribution of water confined in all pores, as 

shown in Fig. S1. When molecules are adsorbed on surfaces their rotational and diffusional dynamics are modi-

fied, rendering an increase in the T1/T2 value.
36

 Two independent experiments that determine each relaxation time 

may be carried out, however, it has been shown that a two dimensional experiment that encodes longitudinal re-

laxation, while detecting transverse relaxation renders a higher level of information.
49

 

Figure 2a shows a T1-T2 correlation map obtained at 60 MHz for a sample prepared with 33 mol % of EGDMA 

content. Water in P1 presents a ratio T1/T2 = 5.4, while in P2 T1/T2 = 13.5 and 25 in P3. The change in the T1/T2 

ratio for different pore sizes could be attributed in principle to the influence of the internal field gradients in the 

determination of T2; however, this effect was observed to be minimal for the short selected echo times. This be-

havior was supported by performing several measurements as a function of the echo time (data not shown). This 

indicates that different surface interactions for liquids confined in each cavity are present, even though the syn-

thesis process ensures an homogeneous distribution of monomeric units throughout the sample. In homogeneous 

systems, as for instance in Indiana rocks saturated with water, distributions parallel to the T1 = T2 line are ob-

served, indicating that a single surface relaxation mechanism is present throughout the system and that relaxation 

is due only to a local S/V variation.
49

 Additionally, the value of T1/T2 ratio for different pores is greater as the 

cross-linker content is decreased, where a striking increase is observed for P3, ranging from 25 to 123, as shown 

in Fig. 2b. For water contained in the remainder of the cavities, an inverse dependence with the pore size is exhib-

ited. 

Assuming a distribution of spherical pores, the relaxation times can be expressed as: ���� = 6��/ if relaxation 

arises solely from a reduction of molecular reorientations. This gives rise to a linear behavior of the relaxation 

rates with respect to the inverse of the cavity size, as shown in Fig. 3a for longitudinal relaxation of water con-

tained in all cavities of the different samples.  

The longitudinal surface relaxivity is obtained from the slope giving rise to a constant average value of 	�� =
(0.020	 ± 0.001) mm/s, that is, at 60 MHz T1 relaxation of confined water is a surface-limited process in the 

whole system environment. The same behavior is observed for transverse relaxation  in P1, P2 and Ps, with an 
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average relaxivity of 	�� = (0.20	 ± 0.04) mm/s. NMR relaxation rates of water corresponding to population P3 

does not depend on the cavity size for networks prepared with high cross-linker content (33, 25 and 17 % of 

EGDMA), and changes when samples develop a gel fraction (6 and 10 mol% of EGDMA content) as shown in 

Fig. 3b.  

The question that arises is if the pore size determined by DDIF for P3 is a real void size or we are in the presence 

of a limitation of this particular technique.  It must be kept in mind that in order to determine the PSD with the 

DDIF sequence, the molecular displacements should cover the whole pore space, thus acquiring information of 

the internal gradient distributions on the phase of the NMR signal. For water corresponding to P3 an apparent 

diffusion coefficient �� =	0.2 m
2
/s was found, while for larger cavities �� = 1.8	m2

/s. For the short diffusion 

time used (∆ = 1 ms) the mean square displacement is given by the diffusion length: �� =	√�∆= 1.6	 m, how-

ever this displacement does not account for the large differences in the apparent diffusion coefficients for the PSD 

shown in Fig. 1a. This data, together with the transverse relaxation times imply that P3 must be interpreted as a 

fraction of water in strong interaction with the polymeric pendant chains. These structures configure a zone where 

water diffusion is strongly restricted as shown in Scheme 2, this behavior is typical when dealing with organic 

systems, where transverse relaxation gives a measure of the direct interaction of water molecules with the poly-

meric matrix.
50

 In summary, the systems under study can be treated as hierarchical distributed pores, formed by a 

hydrated polymer matrix. Information on the interaction of water with this surface is highly relevant for the de-

sign of specific applications. In the next section we focus on this particular aspect. 

 

3.3 Bound Water Relaxation Dispersion. The residence time of a molecule on a pore wall surface is character-

ized by surface correlation times that can potentially be determined by FFC relaxation experiments. The basic 

FFC relaxometry experiment consists of three steps. Initially the spin system is polarized at high field until the 

nuclear magnetization reaches its saturation. Subsequently, the magnetic field is switched to a value "# for a vari-

able time	$#, during which the magnetization relaxes towards its new equilibrium value. A final magnetic field 

step, in which the magnetic field is switched to the intensity at which detection of the NMR signal is performed, 

is carried out. Magnetization is detected with a 90° rf pulse.
32

 At each "# magnetic field the magnetization shows 

a multi-exponential decay, and the relaxation time distribution can then be obtained by application of an ILT algo-

rithm to discriminate the different environments (see Fig. S1). The relaxation rates as a function of the Larmor 

frequency for hydration water (P3) are shown in Fig. 4 for samples with a 6 and 33 mol % of EGDMA content. 

When the liquid molecules are adsorbed on the pores wall surface, the spin-lattice relaxation rate	���� measured at 

relatively low magnetic fields is sensitive to the slow reorientational process of the molecules on the topology of 

the surface. Such reorientations are modulated by translational degrees of freedom, and give rise to RMTD,
19

 

while water contained in the larger voids does not show this behavior. RMTD has also been recently used to de-

scribe solvent dynamics in supramolecular gels.
51, 52
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In the case of normal diffusion, the probability density for a molecular displacement in a given time has a Gaussi-

an form, and can be described in terms of modes with wavenumbers k. When every reorientational autocorrela-

tion function for the k-diffusive mode decays exponentially, it can be represented with a characteristic time 

�% = (�&�)��. The spectral density can be considered as a linear combination of Lorentzian-type contributions 

of all k-diffusive modes between kmin and kmax, weighted by the orientational structure factor P(k),
53

 

'%,)*+�(,) = - .(&) �/0�1(/02)3
%456%478 &. 

Assuming that in the range between kmin and kmax all modes are equally weighted, the relaxation rate induced by 

RMTD is given by 

	����(,) = 9RMTD : 1,;3
<' =,>�?, @ − ' =,>�B, @C + 4

(2,);3 <' =
,>�?2, @ − ' =,>�B2, @CE, 

with	'(F) = arctanG√2F + 1H + arctanG√2F − 1H − artanh =√�??1�@and ,>�B,>�? = 2�/�%456,478 . The pre-factor 

ARMTD depends on the residual dipole-dipole proton interactions, which are averaged by local molecular reorienta-

tions, and on the diffusion coefficient. The RMTD model considers that a molecule has a short surface residence 

time, but returns frequently to the surface, maintaining its orientation relative to the surface and then its orienta-

tional memory, which is lost by diffusion along a curved surface.  

The maximum correlation time �%456 is associated to the time in which a molecule completely loses its contact 

with the surface, and diffuses into the liquid bulk, that is, it represents a surface residence time. From the fittings 

shown in Fig. 4, �%456 = 3.0 µs and �%456 = 1.3	µs are obtained for networks with 6 and 33 mol % of EGDMA 

content respectively. The time a molecule spends near the surface with a characteristic orientation given by its 

topology, is two times greater for networks with a lower amount of cross-linker (high degree of surface OH 

groups), compared to the most cross-linked ones (which have the smallest concentration of surface OH groups). 

On the other hand,  �%478 		represents the rate of water molecular jumps between hydroxyl groups of HEMA con-

tained on pore wall surface, which occur during the residence time. The obtained values are: �%478 = 1.3 ns and 

�%478 = 2.0 ns for networks with 6 and 33 mol % of EGDMA content respectively. Here it can be observed that 

the time between molecular jumps increases as the amount of surface OH groups is lower (highly cross-linked 

sample). Using the Einstein-Smoluchowski relation for a two-dimensional movement with the apparent diffusion 

constant,	〈K〉� = 4���, mean displacements in the order of 1 nm are obtained, indicating the distance of OH 

groups that interact with water molecules. It should be noted that a water molecule probably does not meet all OH 

groups on the surface during the experimental time, and that the jumps are not necessarily between adjacent OH 

groups.  The long molecular residence time in diffusion restricted zone (see Scheme 2) enables the existence of a 
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dispersion of the RMTD type, while in inorganic matrices this relaxation mechanism is observed for pores in the 

range of the nanometers.   

In analogy with the model used by Godefroy and co-workers,
36

 we define a measure of the surface affinity as the 

ratio 	� = �%456/�%478 ,
36

 which represents the number of water molecular jumps during the surface residence 

before total desorption. For networks with a lower cross-linker content and a larger amount of surface OH 

groups		� = 2300; while for 33 mol % of EGDMA, 	� = 650. The percentage change between the surface af-

finities of water in both types of networks is 71 % due to the variation of surface OH groups, while the percentage 

variation of the T1/T2 ratio is 79%, supporting previous observations that at intermediate fields this ratio is a 

measure of surface interaction strength. 

4. CONCLUSIONS 

We have shown that by combining different NMR techniques, the PSD of hierarchical porous polymers as well as 

the water surface affinities can be described in detail. For the systems used in this work, we determined that as the 

percentage of cross-linker decreases, surface interaction of water is enhanced due to the increase pendant HEMA 

groups, which increase the amount of hydroxyl groups in the surface. The development of tunable systems in 

terms of pore size distributions and interactions at molecular level broaden the spectra of applications of porous 

organic materials. In this regard, the ability to control the development of a gel phase and the amount of surface 

hydroxyl groups may prove very useful in the chemical design of materials with a desired specific surface-liquid 

interaction. This has applications for instance in HPLC systems with an extended performance, liquid separation, 

or in the specification of catalytic or enzymatic reactions. The persistence of these properties upon external stress, 

such as that given by a flowing liquid is subject of ongoing research. We envision that the approach presented in 

this work will be important to discern surface interactions in organic porous scaffolds, which may be used to en-

hance the performance of this type of materials for a special application.  
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Scheme 1: (color online) Chemical and physical structures for the porous polymeric networks synthesized by a 

free-radical polymerization of vinyl monomers. 
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Figure 1. a) Pore diameter of different cavities as a function of the cross-linker percentage obtained with the 

DDIF sequence. Swelling is detected only as a lower amount of cross-linker is used. The dashed line represents 

the average pore size of the larger cavities. b) Pore size distribution obtained after an Inverse Laplace Transform 

of data acquired with the DDIF sequence for networks prepared with 33 mol% of EGDMA.  
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Figure 2. (Color online) a) T1-T2 correlation map for a polymer system prepared with a 33 mol % of EGDMA 

content obtained at 60 MHz. b) T1/T2 variations as a function of the cross-linker concentration for water contained 

in the different cavity sizes.   
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Figure 3. (Color online) a) Longitudinal relaxation rates obtained at 60 MHz for water contained in all cavities of 

the five samples as a function of the inverse of the pore size. 	�� = (0.020	 ± 0.001) mm/s is obtained from the 

linear fit. b) Transverse relaxation rates as a function of the inverse of the pore size. 	�� = (0.20	 ± 0.04) mm/s is 

obtained from the linear fit only for pores P1, P2 and Ps. Relaxation in P3 is not a surface limited process and 

changes with the cross-linker content as depicted in the figure. 
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Scheme 2. (Color online) Schematic representation of the different water populations within the sample. Pendant 

groups determine a zone with restricted diffusion, where the RMTD mechanism is present for the organic poly-

meric material. Water contained in the pore spaces behaves with the standard restricted diffusion observed for 

most porous systems. 
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Figure 4. Relaxation dispersion of water confined in smaller cavity sizes, P3. The solid line corresponds to fittings 

using a RMTD model. 
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