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A new approach for calculating relativistic corrections to the nuclear magnetic shieldings is
presented. Starting from a full relativistic second order perturbation theory expression a
two-component formalism is constructed by transforming matrix elements using the elimination of
small component scheme and separating out the contributions from the no-virtual pair and the
virtual pair part of the second order corrections to the energy. In this way we avoid a strong
simplification used previously in the literature. We arrive at final expressions for the relativistic
corrections which are equivalent to those of Fukui et al. �J. Chem Phys. 105, 3175 �1996�� and at
some other additional terms correcting both the paramagnetic and the diamagnetic part of the
nuclear magnetic shielding. Results for some relativistic corrections to the shieldings of the heavy
and light nuclei in HX and CH3X (X�Br,I) at both random phase and second order polarization
propagator approach levels are given. © 2003 American Institute of Physics.
�DOI: 10.1063/1.1525808�

I. INTRODUCTION

Relativistic effects on molecular properties were shown
to be relevant from the earliest time of molecular quantum
mechanics. In particular for properties which depend
strongly on the electronic density in regions close to the
nuclei, like nuclear magnetic resonance �NMR� parameters.
In the last few years an ever increasing number of new for-
malisms and calculations for the evaluation of relativistic
effects on molecular properties from four-, two-, or one-
component response schemes or perturbation theory ap-
proaches have been published.1–11 It was shown that the in-
clusion of such effects in the calculation of some molecular
properties is mandatory when one wants to reproduce experi-
mental trends.4,10

Relativistic spin–orbit �SO� effects on magnetic molecu-
lar properties were thought to be the most important ones
until recent calculations of Visscher et al.4 Numerical results
for nuclear magnetic shieldings obtained by four-component
calculations and their counterpart from Rayleigh–
Schrödinger perturbation theory �RSPT� only match each
other for the shielding of heavy atoms X in HX compounds
when a new term different from SO is included. The so
called mass-correction �MC� term was proposed for the first
time by Fukui et al.6 It was obtained within a formalism in
which the external magnetic field is explicitly included in the
Breit–Pauli Hamiltonian in order to get a gauge-invariant
scheme up to order c�4. The MC term is a second order
expression containing the Fermi contact �FC� and the kinetic

energy (p2) operators. Nakatsuji et al.7 had previously de-
rived explicit expressions for nuclear magnetic shieldings
within a finite perturbation theory �FPT� approach, where the
MC term did not appear. This last scheme is not gauge-
invariant.

In a four-component context all relativistic corrections
are included per se. A few years ago a full-relativistic scheme
developed to calculate magnetic molecular properties within
response theory was presented by Aucar and Oddershede.1

Their relativistic polarization propagator approach �RPPA�
was shown to be a natural extension of its nonrelativistic
counterpart. The nonrelativistic limit of a given molecular
property is reached by considering the corresponding limit of
the property matrix elements and the principal propagator
separately. They explicitly applied this procedure to the mag-
netic field interaction operator. The four-component calcula-
tions of Visscher et al.3,4 make use of this formalism within a
fixed gauge origin approach.

The gauge-invariant two-component theory of Fukui
et al.6 starts from a positive energy Hamiltonian which in-
cludes the magnetic interaction potential. The new MC con-
tribution to the nuclear magnetic shielding comes from Eq.
�5� in Ref. 6. However, the authors apply a justified simpli-
fication and neglect other operators arising from Eq. �5�, be-
ing the mass–velocity operator the most remarkable one.
Their N-electron wave function is built up as a Slater deter-
minant of one-electron unrestricted Hartree–Fock �UHF�
spin–orbitals obtained from that two-component positive en-
ergy Hamiltonian. In such a case one important point to clear
up is related to the above mentioned simplification in the
theory of Fukui et al.6 Given that the MC term is by far the
largest one for relativistic corrections of shieldings on the
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heavy atom in compounds like HX, there could be some
other terms that were neglected though they could have im-
portant contributions.

The use of perturbative approaches allowing the calcu-
lation of relativistic effects employing the Schrödinger mo-
lecular spectrum is attractive because such approaches can be
implemented within any standard quantum chemistry com-
putational program. In the present work we are presenting a
two-component theory for shielding calculations starting
from a four-component RSPT formalism. A set of operators
entering the RSPT expressions in terms of the Schrödinger
molecular spectrum are derived by expanding such four-
component expression as a power series in c�1. All formal
expressions are retained, without neglecting any terms in the
intermediate steps of our derivation. In doing so one of our
main goals has been to obtain formal expressions for opera-
tors previously neglected by other authors, regardless of the
actual difficulties which could arise in their numerical evalu-
ation. At the end we arrive to expressions that are similar to
those of Fukui et al.6 though there are some other new terms.
There are also some differences between closely related
terms like the MC one which in our case has different con-
stant factors and it also has anisotropic contributions. How-
ever, the existence of a sum rule connecting the present MC
like operator and that one of Ref. 6 has been proven as part
of the present work.

This paper is organized as follows: In Sec. II A the rela-
tivistic RSPT expression of magnetic properties in Dirac–
Fock space is expanded as a power series in terms of c�1 in
order to obtain expressions which are correct up to order
c�4. Consistently to this order, all quantities involved can be
calculated in terms of solutions of the molecular Breit–Pauli
Hamiltonian, which is briefly summarized in Sec. II B. Ex-
plicit expressions for the relativistic corrections to the mag-
netic shielding tensor are derived in Sec. II C. They consist
of RSPT�1�, RSPT�2�, and RSPT�3� corrections to the Schrö-
dinger molecular energy. The existence of a sum rule con-
necting the present results to those of Fukui et al.6 is explic-
itly shown in Sec. II D. Numerical results for the magnetic
shielding constants of the heavy and light nuclei in HX and
CH3X (X�Br,I) are presented in Sec. III. Concluding re-
marks are discussed in Sec. IV. Details of calculations are
given in Appendices A, B, and C.

II. THEORETICAL APPROACH

A. Magnetic properties within the RSPT„2…
Within the relativistic framework magnetic molecular

properties which are bilinear in the magnetic potential V
��•A �in a.u.� such as the nuclear magnetic shielding tensor
can be obtained from second order corrections to the relativ-
istic molecular ground state energy. In the present work the
unperturbed system Hamiltonian considered is the Breit
Hamiltonian,12–15

HB�hD�VC�VB, �1�

where hD stands for the one-body Dirac Hamiltonian for a
particle in the field of the �fixed� nuclei of the molecule, and
VC and VB stand for the Coulomb and Breit two-body inter-

action operators in Dirac–Fock space. Introducing a com-
plete set of eigenstates of HB and subtracting the vacuum
polarization term,14,16 the second order correction to the en-
ergy, E (2), can be expressed as

E �2 �� �
n�0

�0�V�n	�n�V�0	
E0�En

� �
n�vac

�vac�V�n	�n�V�vac	
Evac�En

. �2�

In Eq. �2�, states 
�n	� stand for all states in Dirac–Fock
space that can be connected to �0	(�vac	 in the second term�
by the magnetic interaction operator V . In the relativistic
framework, the spectrum of states 
�0	 ,�n	� must have fixed
charge Q��eN for an N electron system in the nonrelativ-
istic limit. But they do not have fixed number of particles, as
both V and HB operators in principle contain pair creation
and destruction operators. �vac	 stands for the vacuum state
in the QED picture.15

In what follows, the nonrelativistic limit and the lowest
order corrections in powers of c�1 to E (2) are given. To this
end, the sum in Eq. �2� is splitted up according to the behav-
ior of (E0�En)�1 in the nonrelativistic limit,

E �2 ��Ea�Eb . �3�

Ea collects those terms such that (E0�En)�1 does not van-
ish in that limit. Hereafter, the intermediate states in Ea will
be referred to as 
�na	�. In the nonrelativistic limit, these
states correspond to the Schrödinger molecular spectrum. Eb

collects terms where states 
�nb	� are such that (E0

�En)�1 does vanish in the nonrelativistic limit, i.e., they
contain at least one virtual electron–positron pair created on
�0	. The vacuum contribution is included in Eb . Therefore,

Ea� �
na�0

�0�V�na	�na�V�0	
E0�Ena

, �4�

Eb��
nb

�0�V�nb	�nb�V�0	
E0�Enb

��
nb

�vac�V�nb	�nb�V�vac	
Evac�Enb

. �5�

Expansion of Ea up to order c�2 yields the nonrelativistic
paramagnetic contribution to magnetic properties.1 In agree-
ment with Ref. 11, it will be shown that expansion of Eb up
to order c�2 yields the diamagnetic contribution. The lowest
order relativistic corrections to molecular magnetic proper-
ties arise to order c�4 in Ea and Eb . Consistently to this
order, Eb can be approximated by expanding (E0�Enb

)�1 as
follows:

�E0�Enb
��1���2mc2��nb0��1

��
1

2mc2 � 2�
E0�Enb

2mc2 � , �6�

where �nb0�Enb
�E0�2mc2 is of order c0 or lower.

Taking Eq. �6� into account, the following expression of
Eb is valid up to order c�4:
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Eb��
1

2mc2 �
nb

� 2�0�V�nb	�nb�V�0	

�
E0�Enb

2mc2 �0�V�nb	�nb�V�0	�
�

1

2mc2 �
nb

� 2�vac�V�nb	�nb�V�vac	

�
Evac�Enb

2mc2 �vac�V�nb	�nb�V�vac	� . �7�

Considering that

�E0�Enb
��0�V�nb	��0��HB,V��nb	, �8�

Eq. �7� can be expressed as

Eb��
1

2mc2 �
nb

� �0�2V�
1

2mc2 �HB,V��nb	�nb�V�0	�
�

1

2mc2 �
nb

� �vac�2V�
1

2mc2 �HB,V��nb	

��nb�V�vac	� . �9�

As a result, an expression of E (2) consistent up to order c�4

is obtained from which relativistic corrections to magnetic
properties can be derived,

E �2 �� �
na�0

�0�V�na	�na�V�0	
E0�Ena

�
1

2mc2

��
nb

� �0�2V�
1

2mc2 �HB,V��nb	�nb�V�0	�
�

1

2mc2 �
nb

� �vac�2V�
1

2mc2 �HB,V��nb	

��nb�V�vac	� . �10�

The set of unperturbed relativistic molecular states

�na	 ,�nb	� in Eq. �10� is now considered. As mentioned
above, they correspond to eigenstates of the Breit Hamil-
tonian HB, in Dirac–Fock space. The complete space can be
spanned in terms of the set of one-particle states obtained as
solutions of the one-body Dirac-Hamiltonian h1

D for a par-
ticle in the Coulomb field of the �fixed� nuclei in the molecu-
lar system.13 Consistently with the QED picture, this proce-
dure defines the set of ‘‘electronic’’ and ‘‘positronic’’
bispinors needed to span the Dirac–Fock space. The bare
vacuum �vac	 is defined as the state which does not contain
neither electrons nor positrons. In terms of such one-particle
states, molecular states 
�na	,�nb	� do not have a fixed num-
ber of particles, due to the presence of virtual pair creation
and destruction operators in the Coulomb and Breit interac-
tion terms.

However, within perturbation theory in terms of the c�1

parameter, the set of states 
�na	� consist of N-particle states
plus small virtual pair creation contributions; and states


�nb	� are N�2 and N�4 particle states with corresponding
virtual pair corrections. In order to make clear this separation
and easier the matrix element calculations involved in Eq.
�10� we partition the second quantized form of the HB

Hamiltonian as13

HB�H �0 ��H �� �. �11�

H (0) contains those terms of HB which do not connect dif-
ferent particle number manifolds in Dirac–Fock space, i.e., it
is the particle number conserving part of HB. The corre-
sponding spectrum consists of fixed particle number states.
In particular, for a molecule of charge Q��eN , solving
H (0) within the N-particles manifold of Dirac–Fock space
constitutes the no-pair approximation to molecular states. By
construction, the one-body part, h1

D , which contains terms of
order c2 is wholly included in H (0), since it has been diago-
nalized. H (�) gathers those terms of the Coulomb and Breit
two-body operators that create or destroy one and two
electron–positron pairs, i.e., connecting the N-particle mani-
fold with both the N�2 and N�4 particle manifolds of the
same charge Q. Matrix elements therein are of order c0 or
lower. As a consequence, the influence of H (�) can be taken
into account by the application of perturbation theory with
c�1 as perturbation parameter.

Taking into account the previous discussion, it is con-
cluded that E (2) in Eq. �10� can be evaluated as a double
perturbation series expansion in the magnetic interaction V
and H (�). Within this approach the ‘‘unperturbed’’ Hamil-
tonian is H (0), i.e., the particle number conserving part of
HB. The fixed particle number spectrum of H (0) can be clas-
sified as follows. States of type 
�na	� are N-particles states
and they correspond to the no-pair approximation of the mo-
lecular spectrum. They are hereafter dubbed as 
�na

(0)	
�nN	�. Eigenstates of H (0) of type 
�nb	� are N�2 or N
�4 particles states and they are hereafter referred to as

�nb

(0)	�nK	,K�N�2,N�4�. Considering operators V and
H (�), evaluation of E (2) from Eq. �10�, can be separated into
two terms: �1� a contribution obtained by considering the
no-pair approximation to the spectrum of molecular states
within the N-particle manifold of Dirac–Fock space, and �2�
a contribution originating in one and two pair-creation ef-
fects.

1. No-pair approximation

When the no-pair approximation of unperturbed states is
considered within the N-particle manifold of Dirac–Fock
space in E (2), only the first term Ea in Eq. �10� yields a
nonzero contribution. All quantities involved in it depend
only on both the positive energy spectrum of the one-body
relativistic Hamiltonian h1

D and on the N-particles states

�0N	,�nN	� which lead to the Schrödinger spectrum of states
in the nonrelativistic limit. Such N-particle states contain
only ‘‘electronic’’ bispinors, and they can be obtained con-
sistently up to order c�2 applying perturbation theory to the
nonrelativistic Schrödinger molecular spectrum via the
Breit–Pauli Hamiltonian12 �see Sec. II B for further details�.
Therefore, the Ea contribution to E (2), Eq. �10�, within the
no-pair approximation is
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Ea
NP� �

n�0

�0N�V�nN	�nN�V�0N	
E0N

�EnN

. �12�

Equation �12� is a suitable expression to obtain relativ-
istic corrections as a power series in c�1 starting from the
Schrödinger spectrum of states. To this end, matrix elements
of the magnetic interaction involving ‘‘electronic’’ bispinors
must be re-expressed in terms of their ‘‘large’’ components.
The detailed calculation of these terms is presented in Sec.
II C and Appendix A.

2. One and two virtual pair creation contributions

One and two virtual pair contributions to E (2), Eq. �10�,
are as follows: On the one hand, neglecting H (�), in Eb the
magnetic interaction operator V connects the no-pair
N-particle ground state with the manifold of N�2 particles
states. This contribution is taken into account in Eb

N�2,

Eb
N�2��

1

2mc2 �
nN�2

� �0N�2V

�
1

2mc2 �HB,V��nN�2	�nN�2�V�0N	�
�

1

2mc2 �
n2

� �vac�2V�
1

2mc2

��HB,V��n2	�n2�V�vac	� , �13�

where the consistent �vac	 state is the bare vacuum �vac	 in
the Dirac–Fock space. The intermediate states in the first
�second� term of Eb

N�2 are N�2 �2� particle states. There-
fore, the sums in Eq. �13� act as projectors onto the manifold
of the corresponding number of particles in each case. De-
fining the projection operator PK onto the K-particle mani-
fold of the Dirac–Fock space as

PK��
nK

�nK	�nK�, �14�

Eb
N�2 can be expressed as

Eb
N�2��

1

2mc2 �0N�� 2V�
1

2mc2 �HB,V� � PN�2V�0N	

�
1

2mc2 �vac�� 2V�
1

2mc2 �HB,V� � P2V�vac	.

�15�

In Sec. II C 2 explicit expressions are derived for each term
in Eq. �15� as a function of the Schrödinger spectrum of
states consistently up to order c�4.

On the other hand, virtual pair creation contributions are
also obtained when the effect of H (�) is taken into account
into molecular states in Ea and Eb . These contributions can
be introduced considering the first-order correction given by
H (�) to the no-pair molecular states 
�nN	�. Following Ref.
13, the leading term of this correction in the expansion pa-
rameter c�1 can be expressed as

Ena

�1 ���nN�H �� ��nN	�0, �16�

�na
�1 �	��

m

�m	�m�H �� ��nN	
En�Em

��� 1

4mc2 PN�4�
1

2mc2 PN�2�H �� ��nN	. �17�

The result in Eq. �17� is based on the following grounds.
Since �nN	 is an N-electron state, H (�) connects it with states
�m	 which contain N�2 or N�4 particles, i.e., one or two
electron–positron pairs created on �nN	. The leading term in
the energy differences (En�Em) is �2mc2 in first place,
and �4mc2 secondly. Keeping only these leading terms in
the denominator the sum over intermediate states �m	 acts as
a projector onto the N�2 or N�4 particle manifolds, re-
spectively, yielding the final result of Eq. �17�. It is worth
mentioning that PN�4H (�)�nN	 contains terms of order c0

due to the Breit interaction operator, but PN�2H (�)�nN	 is of
order c�1, or lower.

Replacing Eqs. �16� and �17� in Eq. �10�, and keeping
terms up to order c�4, the following corrections to E (2) due
to one and two virtual pair creation contributions originating
in H (�) are found:

Ea
VP��

1

2mc2

� �
n�0

�0N�H �� �PN�2V�VPN�2H �� ��nN	�nN�V�0N	
E0N

�EnN

�
�0N�V�nN	�nN�H �� �PN�2V�VPN�2H �� ��0N	

E0N
�EnN

,

�18a�

Eb
N�4�

1

8m2c4 ��0N�H �� �PN�4VPN�2V�0N	

��0N�VPN�2VPN�4H �� ��0N	�

�
1

8m2c4 ��vac�H �� �P4VP2V�vac	

��vac�VP2VP4H �� ��vac	�, �18b�

where it must be understood that in Eq. �18� all intermediate
states correspond to fixed particle number states.

Taking into account results Eqs. �12�, �13�, �18a�, and
�18b�, the second-order energy correction has been split up
as

E �2 ��Ea
NP�Ea

VP�Eb
N�2�Eb

N�4. �19�

B. Relationship between no-pair relativistic
molecular states and Schrödinger molecular states:
The Breit–Pauli Hamiltonian

In order to evaluate the different contributions to E (2) in
Eq. �19� as a series expansion in powers of c�1 in terms of
the Schrödinger spectrum of states, the relationship between
relativistic molecular states 
�0N	 ,�nN	�, i.e., the N-particle
solutions to H (0), and the Schrödinger spectrum of states
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must be established. This connection is readily provided by
the Breit–Pauli Hamiltonian,12,17 which is briefly summa-
rized here.

The no-pair approximation to the Breit Hamiltonian of
Eq. �20�,12,17

HB��
i�1

N

h1
D� i ��

1

2 �
i� j

N � 1

ri j
�

1

2ri j
�� i� j

�
�� i•ri j��� j•ri j�

ri j
2 � � �20�

is obtained considering all possible configurations �K4	
���K1

4 ¯�KN

4 	 of N positive-energy four-component spinors

�� i
4	 which are solutions of the one-body Dirac Hamiltonian

h1
D , i.e.,

h1
D�c�p�mc2���

A

ZA

�r�RA�
, �21�

h1
D�� i

4	��mc2�Ei��� i
4	. �22�

A given positive energy four-component spinor can be split
in its large �L� and small �S� components,

�� i
4	�� �� i

L	

�� i
S	

� , �23�

�� i
S	�Ri

�1c•��p ��� i
L	 , �24�

Ri��2mc2��VC�Ei��, �25�

where VC stands for the one-body potential in Eq. �21� and �
stand for the two-dimensional Pauli matrices. Consistently to
order c�4 Ri

�1 can be written as

Ri
�1�

1

2mc2 �1�
VC�Ei

2mc2 � . �26�

Replacing Eq. �26� in Eq. �24� an expression for �� i
S	 which

is exact up to order c�3 is obtained,

�� i
S	�

1

2mc �1�
VC�Ei

2mc2 ���p ��� i
L	 �27�

when the large component is exact up to order c�2.
The differential equation for the large component �� i

L	
that arises from the Dirac Hamiltonian can be transformed
into an eigenvalue problem with unit metric consistently up
to order c�2 for a ‘‘normalized’’ spinor ��̃ i	 with the follow-
ing Pauli Hamiltonian:17

HP�hs�D1 , �28�

where

�� i
L	�	1�

p2

8m2c2 
��̃ i	, �29�

hS stands for the one-body Schrödinger Hamiltonian and D1

is

D1�
1

8m3c2 p4�
1

8m2c2 ��2VC��
1

4m2c2 ���VC�p �,

�30�

where the familiar mass–velocity �MV�, Darwin �DW� and
spin–orbit �SO� terms are readily recognized. In an analo-
gous way, the two-body interaction terms in HB between
configurations of positive energy bispinors �K4	 can be re-
expressed in terms of configurations �K̃	 of the correspond-
ing ‘‘normalized’’ spinors ��̃ i	. Consistently up to order c�2,
this procedure leads to the Breit–Pauli Hamiltonian, HBP,

�L4�HB�K4	��L̃�HBP�K̃	, �31�

HBP�HS�D , �32�

where HS stands for the N-electron Schrödinger Hamiltonian
and D is given by

D�D1�D2 , �33�

with D1 being the generalization of Eq. �30� to the N-particle
state space and D2 is

D2�
1

2m2c2 �
i� j � �

1

4

ri j
2 pipj��ri j�ri j .pj�.pi�

ri j
3 ����ri j��

� � i

2
�� j� .ri j�pi

ri j
3

�
�

3
�� i•� j���ri j��

1

8

ri j
2 �� i� j��3�� iri j��� jri j�

ri j
5

� . �34�

Different terms in D2 can be identified as follows: The first
term is the so-called orbit–orbit �OO� interaction, the second
one is the two-body Darwin term �DW�2��, the third one
represents the two-body spin orbit �SO�2�� and spin–other
orbit �SOO� interactions and the fourth and fifth terms stand
for the spin–spin interaction terms, both Fermi contact �FC-
SS� and dipole–dipole �SD-SS� interactions.

Therefore, the energy eigenvalues and configuration
coefficients 
En ,�nN	��CnK

�K4	� corresponding to N-part-

icles eigenstates 
�nN	� of HB �i.e., within the no-pair ap-
proximation� can be obtained correctly up to order c�2 from
the Breit–Pauli Hamiltonian. As a consequence, consistently
to this order, both the expectation values and the RSPT ex-
pressions in Eqs. �12�, �15�, and �18�, can be evaluated em-
ploying the HBP spectrum of states. To this end, the reduction
of matrix elements of a given Dirac-type operator W between
configurations 
�K4	� to those of a new operator O(W) be-
tween the corresponding configurations of ‘‘nor-
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malized’’ spinors 
�K̃	� must be carried out consistently to
the desired order,

�L4�W�K4	��L̃�O�W ��K̃	. �35�

Thus, hereafter use will be made of Eqs. �36� and �37�,

�04�W�04	��0̃�O�W ��0̃	 , �36�

�
nN�0

�0N
4 �W�nN

4 	�nN
4 �W�0N

4 	
E0�EnN

� �
ñ�0

�0̃�O�W ��ñ	�ñ�O�W ��0̃	
E0�Eñ

, �37�

where the superscripts are written in order to emphasize that
the l.h.s. of Eqs. �36� and �37� are evaluated in terms of
configurations 
�K4	�, whereas those of the r.h.s. are evalu-
ated in terms of configurations 
�K̃	�.

In the r.h.s. of Eqs. �36� and �37� the unperturbed states
correspond to eigenstates of the Breit–Pauli Hamiltonian
HBP. The usefulness of such expressions comes from the fact
that relativistic effects in HBP are introduced via operators
D1 and D2 which can be thought of as perturbations to the
Schrödinger molecular Hamiltonian. The first order RSPT
corrections to the energy and molecular states yield results
that are correct up to order c�2,

Eñ�En
S��nS��D1�D2��nS	 , �38�

�ñ	��nS	� �
n�n

�mS��D1�D2��nS	
En

S�Em
S �mS	 , �39�

where the superscript ‘‘S’’ identifies eigenstates of the Schrö-
dinger molecular Hamiltonian, HS.

C. Relativistic corrections to the nuclear magnetic
shielding tensor

The nuclear magnetic shielding tensor for a nucleus M
can be obtained as18

�Mi j�� �2E

��Mi�Bj
�

�M�0
B�0

, �40�

where E stands for the molecular electronic energy in the
presence of both the external uniform and the nuclear mag-
netic fields. In order to express relativistic corrections to �M

consistently up to order c�4 in terms of the Schrödinger
molecular spectrum, all quantities defined in Sec. II A, i.e.,
Ea

NP , Eq. �12�; Ea
VP , Eq. �18a�; Eb

N�2, Eq. �15�; and Eb
N�4,

Eq. �18b�, must be re-expressed according to results in Sec.
II B, Eqs. �36�–�39�. The corresponding expressions are ob-
tained in the present section. Contributions that arise from
Ea

NP and Ea
VP will be assigned to the paramagnetic term of

�M , whereas those originating in Eb
N�2 and Eb

N�4 corre-
spond to the diamagnetic term.

1. Paramagnetic term
a. Contribution from no virtual pair excitations to the

paramagnetic term: In order to evaluate Ea
NP of Eq. �12�, the

reduction of matrix elements of the magnetic interaction op-
erator V��•A �atomic units are used throughout� between

positive energy bispinor configurations to spinor configura-
tions is readily obtained if such reduction is carried out for
the positive-energy bispinors themselves according to the
discussion in Sec. II B �see Eq. �35��, i.e.,

�� i
4��•A�� j

4	���̃ i�O��•A���̃ j	 . �41�

Details of the derivation are presented in Appendix A. The
resulting one-body operator O can be split up into a c�1

contribution (O1), and a c�3 contribution (O3). For the spe-
cific calculation of the nuclear magnetic shielding tensor one
operator of this kind can be defined as a function of the
uniform magnetic field B and another one as a function of the
nuclear magnetic moment �M . These operators can still be
re-expressed according to their singlet or triplet character.
Explicit expressions are as follows. The first order singlet
and triplet operators associated to the uniform magnetic field
are

O1S�B ��
1

2mc
L .B , �42a�

O1T�B ��
1

2mc
� .B , �42b�

which represent the orbital and spin Zeeman interactions
which hereafter will be referred to with the acronyms ‘‘OZ’’
and ‘‘SZ,’’ respectively.

The first order singlet and triplet operators associated
with the nuclear magnetic moment are

O1S��M ��
1

mc

�M .LM

rM
3 , �43a�

O1T��M ��
1

2mc
� .BM , �43b�

where

BM�� 8�

3
��rM ��M�

3��M .rM �rM�rM
2 �M

rM
5 � . �43c�

O1S(�M) is the paramagnetic spin–orbit interaction operator
�PSO� and O1T(�M) contains the Fermi contact �FC� and
spin-dipolar �SD� operators.

The singlet and triplet operators to the third order in c�1

associated to the uniform magnetic field B are

O3S�B ���
1

8m3c3 
L .B ,p2�, �44a�

O3T�B ���
1

8m3c3 �3�� .B �p2��� .p ��p .B �

�4m� .�VC�AB�, �44b�

where the curly brackets stand for the anticommutator and
VC for the one-body Coulomb potential in the Pauli Hamil-
tonian. O3S(B) will be identified by the acronym OZ-K. The
first two terms in O3T(B) will be identified altogether by the
acronym SZ-K and the third term will be called B-SO �mag-
netic external field induced spin–orbit term�.

Singlet and triplet operators to the third order in c�1

associated with the nuclear magnetic moment are
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O3S��M ���
1

4m3c3 � �M .LM

rM
3 ,p2� , �45a�

O3T��M ���
1

8m3c3 � 3

2
p2�� .BM ��

1

2
�� .BM �p2

�i� .�AM�p ,p2��4m� .�VC�AM � .

�45b�

O3S(�M) will be referred to as the PSO-K term. The first,
second, and third terms in O3T(�M) will be identified alto-
gether by the acronym SZ-BM-K and the last one by BM-SO
�nuclear magnetic field-induced spin–orbit term�.

Considering Eqs. �42�–�45� the expression of Ea
NP can be

evaluated first at the lowest possible order in the parameter
c�1. In this case, the unperturbed molecular spectrum corre-
sponds to the HS spectrum and the perturbation operators are
O1(�M) and O1(B). For a system with a singlet ground
state it is found

E �para,NR��E�O1S��M �,O1S�B ��, �46�

where the shorthand notation for a second order RSPT ex-
pression of Eq. �47� has been introduced,

E�A ,B �� �
n�0

� �0�A�N ��n	�n�B�N ��0	
E0�En

�
�0�B�N ��n	�n�A�N ��0	

E0�En
� , �47�

where A(N) stands for the one-body operator A in the
N-particle state space,

A�N ���
i

Ai . �48�

Result of Eq. �46� yields the nonrelativistic paramagnetic
contribution to �M . Triplet operators do not contribute to
Eq. �46� because for a singlet ground state Eq. �49� holds,

O1T�B ��0	�0. �49�

Two classes of relativistic corrections to Ea
para originating

in Ea
NP do appear up to order c�4. Within the first class of

terms, a third-order operator O3 is included in a second-order
RSPT expression,

E �para,2��E�O1S��M �,O3S�B ���E�O1T��M �,O3T�B ��

�E�O3S��M �,O1S�B ��. �50�

We do not consider O3T(�N) due to the result of Eq. �49�.
The second class of terms are those in which an O1

operator enters twice and the unperturbed molecular spec-
trum contains relativistic corrections via operator D�D1

�D2 defined in Sec. II B, Eq. �33�. These combinations yield
third order RSPT expressions. Introducing the short-hand no-
tation,

E�A ,B ,C �

� �
n�0

�0�A�N ��n	�n�B�N ���B�N �	�m	�m�C�N ��0	
�E0�En��E0�Em�

�
�0�B�N ��n	�n�C�N ���C�N �	�m	�m�A�N ��0	

�E0�En��E0�Em�

�
�0�C�N ��n	�n�A�N ���A�N �	�m	�m�B�N ��0	

�E0�En��E0�Em�
,

�51�

where �X(N)	��0�X(N)�0	, the following terms are found
for a system with a singlet ground state �taking spin symme-
try into account�:

E �para,3��E�O1S��M �,O1S�B �,DS�

�E�O1T��M �,O1S�B �,DT�

�E�O1T��M �,O1T�B �,DT�, �52�

where the operator D has been separated into tensor compo-
nents of rank 0 �singlet�, DS; 1 �triplet�, DT; and 2 �quintu-
plet�, DQ, in spin-space. The singlet D1

S term corresponds
both to the Darwin �DW� and mass–velocity �MV� operators
and the triplet D1

T term corresponds to the spin–orbit �SO�
term. The singlet terms in D2 are OO, DW�2�, and FC-SS
defined in Sec. II B. The triplet ones are the two-body SO�2�
and SOO terms and the quintuplet one is SD-SS. For a sys-
tem with a singlet ground state, there is no contribution from
the SD-SS operator in Eq. �52�, due to the result in Eq. �49�.
In Table I all possible contributions originating in Eqs. �50�
and �52� are presented. The total contribution to E (2) which
comes from Ea

NP is thus

Ea
NP�E �para,NR��E �para,2��E �para,3�. �53�

b. One and two virtual pair contributions to the para-
magnetic term: Turning the attention now to the operators in
Ea

VP , Eq. �18a�, it is observed that due to the factor 1/2mc2

and to the fact that the magnetic interaction operator V be-
tween N particles states yields matrix elements of order c�1

or lower, only terms of order c�1 of the remainder operators
should be calculated. To this end, the corresponding reduc-
tion from bispinor configurations to the spinor configurations
representation of the operator W defined in Eq. �54� must be
carried out,

W�PN�H �� �PN�2V�VPN�2H �� ��PN . �54�

Considering the second quantized form of the operators
involved and both the Coulomb and Breit interaction terms
in H (�), the final form of the operator reduced to spinors
configurations according to Eq. �35� �see Appendix C for
details�, O(W) is

O�W ����
i� j

� Oi
1,

1

ri j
� �

1

mc �
i� j

� 
pi ,OJ i jA j�

�� � j�
ri j

r i j
3 � .Ai� , �55�
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where Oi
1 stands for the first order magnetic operator defined

in Eqs. �42� and �43�, the curly brackets stand for the anti-
commutator; the two-body tensor operator OJ i j is defined as

OJ i j��
1

2ri j
� IJ�

ri j .ri j
t

r i j
2 � , �56�

where ri j
t is the transpose of ri j . An operator O(W), Eq.

�55�, can be defined for the uniform magnetic field, O(WB),
and another one for the nuclear magnetic moment O(W�M

).
In order to obtain contributions to �M correct to order c�4

originating in Ea
VP , operators O(W) must be combined with

operators O1 �Eqs. �42� and �43�� in second order RSPT
expressions based on the Schrödinger molecular unperturbed
spectrum, i.e.,

Ea
VP��

1

2mc2 
E�O�WB�,O1��M ��

�E�O�W�M
�,O1�B ���, �57�

where the shorthand notation of Eq. �47� has been used.

2. Diamagnetic term

The contribution to E (2) which arises from Eb
N�2, Eq.

�15�, is

Ediam��
1

2mc2 �0N�� 2V�
1

2mc2 �HB,V � � PN�2V�0N	

�
1

2mc2 �vac�� 2V�
1

2mc2 �HB,V� � P2V�vac	.

�58�

The reduction of matrix elements in Eq. �58� from bi-
spinors configurations to spinor configurations according to
results in Sec. II B �Eqs. �36�–�39�� is now considered. To
this end we define operator X,

X�2V�
1

2mc2 �HB,V� , �59�

which can be separated into two terms. The first one involves
the one-body part of HB and the second one the two-body
part,

X�1 ��2V�
1

2mc2 �hD,V� ,

�60�

X�2 ��
1

2mc2 �VC�VB,V� .

VC,VB stand for the two-body Coulomb and Breit operators,
Eq. �1�. The commutator �VC,V � vanishes and therefore only
the Breit interaction must be taken into account in X(2).

Let us first analyze the contributions to Eb
N�2 originating

from X(1), which is a one-body operator. The corresponding
term is dubbed Ediam �1�,

Ediam�1 ���
1

2mc2 �0N�X�1 �PN�2V�0N	

�
1

2mc2 �vac�X�1 �P2V�vac	. �61�

Due to the factor 1/2mc2 the expectation values in Eq. �61�
should be expanded up to order c�2. A more compact form
for Ediam(1) can be found considering the second quantized
form of the operators involved in it and also Eqs. �36�–�37�.
After rearrangement of terms �see Appendix B for details� it
is found,

Ediam�1 ��
1

2mc2 �0̃��
i

A2� i ��0̃	�
1

8m3c4

��0̃��
i

�
�p ,�A�2���A �p2��A �

���p �A2��p ��
p2,A2�� 1
2�A2,p2� �� i ��0̃	.

�62�

In Eq. �62� it is explicitly seen that, up to order c�2, only the
first term remains and �0̃	 must be replaced by the Schrö-
dinger molecular ground state �0	. The nonrelativistic dia-

TABLE I. Relativistic corrections to the paramagnetic contribution of the nuclear magnetic shielding tensor
arising from Eqs. �50� and �52�.

O(�M) O(B) D

Terma

�M
p (A ,B) or

�M
p (A ,B ,C)

PSO OZ-K ¯ (PSO,OZ-K)
PSO-K OZ (PSO-K ,OZ)
FC, SD SZ-K , B-SO (FC,SZ-K) (SD,SZ-K)

(FC,B-SO) (SD,B-SO)
PSO OZ DW, MV

DW�2�, OO, FC-SS
�PSO,OZ,DW� �PSO,OZ,MV�

�PSO,OZ,DW�2��
�PSO,OZ,OO�

�PSO,OZ,FC-SS�
FC,SD OZ SO

(�SO(1)�SO(2))
�FC,OZ,SO� �SD,OZ,SO�

�FC,OZ,SOO� �SD,OZ,SOO�
FC,SD SZ SO

(�SO(1)�SO(2))
�FC,SZ,SO� �SD,SZ,SO�

�FC,SZ,SOO� �SD,SZ,SOO�

aSee text for the definitions of the acronyms identifying the different involved operators.
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magnetic contribution to magnetic properties is thus ob-
tained, in accordance to Ref. 11. In order to obtain a result
which is exact up to order c�4, in the first term �0̃	 must
include relativistic corrections via the operator D, but, due to
the factor 1/8m3c4, the last expectation value must be calcu-
lated with the Schrödinger molecular ground state.

In order to simplify Eq. �62� it is useful to observe that

�0��
i

�pi
2,Ai

2��0	��0���
i

pi
2,�

j
A j

2� �0	

�2m�0��HSch,�
j

A j
2� �0	�0, �63�

and, therefore, collecting terms bilinear in the magnetic po-
tential of the external uniform field AB and of the nuclear
magnetic field AM , Eq. �62� can be expressed as

Ediam�1 ��
1

mc2 �0̃��
i

AB .AM� i ��0̃	

�
1

8m3c4 �0��
i

Wi�Wi
��0	, �64�

where

W�4�AMp ��ABp ��2��BM ��ABp ��2�AMp ���B �

���BM ���B ����AM ��p2�AB�

���p ��AB .AM ���p ��2�AB .AM �p2. �65�

Taking into account that

�0��
i

Wi�Wi
��0	�2 Re�0��

i
Wi�0	 �66�

for a molecule with a real singlet ground state only those
terms of W which do not contain the Pauli matrices or imagi-
nary operators �in coordinates representation� can give non-
zero contributions. The overall result in this case, including
relativistic corrections to �0̃	 , can be expressed as

Ediam�1 ��
1

mc2 �0�AB .AM�0	�E� 1

mc2 AB .AM ,DS�
�

1

4m3c4 �0��
i

Wi��0	 ,

�67�
W��4�AMp ��ABp ��B .BM�AMp2AB

�p�AB .AM �p�2�AB .AM �p2,

where the shorthand notation of Eq. �47� is used to indicate a
second-order RSPT contribution. After a few algebraic steps,
W� can be re-expressed as

W��W1��W2� ,

W1�� �
i , j�x ,y ,z

4AMiAB jpip j�2�AB .AM �p2, �68�

W2�� 1
2AB .���BM �.

If the gauge origin of the external uniform magnetic potential
is placed at the position rM of the nucleus M, Eq. �69� holds,

W2��2���M .B ���rM �. �69�

The contribution to Eb
N�2 originating in X(2) is now

considered. It will be referred to as Ediam(2),

Ediam�2 ��
�1

2mc2 ��0N�X�2 �PN�2V�0N	

��vac�X�2 �P2�vac	�

�
�1

�2mc2�2 ��0N��VB,V�PN�2V�0N	

��vac��VB,V�P2V�vac	�. �70�

Consistently to order c�4, only the c0 contribution to the
expectation value in Eq. �70� must be calculated. For the
magnetic interaction operator V only terms creating or de-
stroying one electron–positron pair are of order c0. For the
Breit interaction operator, matrix elements of order c0 are
those creating two electron–positron pairs, destroying two
such pairs or containing one creation and one destruction
electron–positron pair operator. Therefore, the contributions
of order c0 to the expectation value for the ground state �0N	
can be expressed as

�0N��VB,V�PN�2V�0N	��0N�VBPN�4VPN�2V�0N	

��0N�VBPNVPN�2V�0N	

��0N�VPN�2VBPN�2V�0N	

��0N�VPN�2VBPN�2V�0N	.

�71�

A similar expression holds for the expectation value for the
�vac	 state. Consistently to order c0 the first term in Eq. �71�
is exactly cancelled by Eb

N�4 in Eq. �18b� �see Sec. II A�.
The second and fourth terms vanish because of the presence
in VB of positron destruction operators. Therefore, the unique
nonvanishing contribution originates in the third term,

Ediam�2 ��
1

�2mc2�2 ��0N�VPN�2VBPN�2V�0N	

��vac�VP2VBP2VBP2V�vac	�. �72�

Finally, the Breit interaction operator is expressed as

VB� 1
2 �

i� j
� iOJ i j� j , �73�

where OJ i j was defined in Eq. �56�. Reduction of Eq. �72�
from bispinor configurations to spinor configurations is bet-
ter carried out considering the second quantized form of the
operators involved in it. The final result is �see Appendix C
for details�

Ediam�2 ��
1

�2mc2�2 �0��
i� j

Ai .OJ i j .A j

��� i�Ai�.OJ i j .�� j�A j��0	, �74�

where �0	 is the Schrödinger molecular ground state. Consid-
ering the external uniform magnetic field contribution to the
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magnetic potential, AB , and the nuclear magnetic potential,
AM , and retaining only terms bilinear in B and �M it is
found that

Ediam�2 ��
2

�2mc2�2 �0��
i� j

ABi .OJ i j .AM j

��� i�ABi�.OJ i j .�� j�AM j��0	 . �75�

Summing up, the total contribution originating in Eb of
Eq. �5� has been expressed as

Eb�Ediam�1 ��Ediam�2 �. �76�

D. Sum rules and alternative expressions
for E „para,2… and Ediam„1…

In Sec. II C two operators were defined containing cor-
rections of order c�3 to matrix elements of the magnetic
interaction, i.e., O3T(B) of Eq. �44�, and O3T(�M) of Eq.
�45�. According to the discussion in Sec. II C �see Eq. �50��,
only the first one yields relativistic corrections to the mag-
netic shielding tensor for a singlet ground state molecule in a
second order RSPT contribution, that is,

E�O1T��M �,O3T�B ��. �77�

An alternative expression for the contribution to the molecu-
lar energy originating in O3T(B) can be obtained by re-
expressing this operator in a different way. Applying the re-
sults of Appendix A, Eq. �A26�, to the triplet operator
O3T(B) associated with the uniform magnetic field within
the N-particle state space, Eq. �78� is obtained,

O3T�B ��O�3T�B ��O�3T�B �, �78�

where

O�3T�B ���
1

8m2c3 �
i

2�� i .B �pi
2�2m� i .��iVC

�ABi��
1

8m2c3 �
i� j

� 1

ri j
,��p ,�AB�� i �� ,

�79�

O�3T�B ���
1

8m2c3 �HSch,�
i

��p ,�AB�� i �� . �80�

The potential VC in Eq. �79� stands for the one-body Cou-
lomb potential of the nuclei in the Schrödinger Hamiltonian.
The last term in Eq. �79� is now a two-body operator which
can be expressed as

1

8m2c3 �
i� j

� 1

ri j
,��p ,�AB�� i ��

��
1

4m2c3 �
i� j

�� i�ABi�.
ri j

r i j
3 . �81�

This expression corresponds to the ‘‘field induced’’ two-body
spin–orbit contribution of Refs. 6 and 9.

The contribution to the molecular energy due to O3T(B)
is now splitted up into

�1� a second order RSPT expression containing
O�3T(B), i.e.,

E�O1T��M �,O�3T�B �� �82�

and
�2� one contribution due to O�3T(B) which can be re-

expressed as

E�O�3T�B �,O1T��M ����
1

8m2c3�
n

�0��HSch,� i��p ,�A�� i ���n	�n�O1T��M ��0	
E0�En

�
1

8m2c3 �
n

�0�O1T��M ��n	�n��HSch,�
i
��p ,�A�� i ���0	

E0�En

�
1

8m2c3 �0���
i

��p ,�AB�O1T��M �� i ���
i

O1T��M ���p ,�AB�� i ��0	. �83�

Inserting the explicit expression of O1T(�M) of Eq. �43� into
Eq. �83� the final result is

E�O�3T�B �,O1T��M ��

�
1

16m3c4 �0��
i

�� .BM ,��p ,�A��� i ��0	

�
1

8m3c4 �0��
i

�AB .���BM ��� i ��0	. �84�

This means that it can be expressed as a first-order correction
to the molecular energy. It is worth noting that this contribu-
tion cancels exactly that originating in �0�W2��0	 in the dia-
magnetic component, Eqs. �68� and �69�.

It is interesting to compare results in Sec. II C to those of
the present section. In the first case, O3T(B) enters in a
second-order RSPT expression and the diamagnetic term
contains the term �0�W2��0	 of Eq. �68�, which is the same as
that of Eq. �84� with opposite sign. Both operators involved
are one-body operators. It has been explicitly shown that this
procedure is equivalent to consider operator O�3T(B) in a
second-order RSPT expression and to cancel the contribution
�0�W2��0	 to the diamagnetic term. In O�3T(B), Eq. �79�, the
different operators involved have the same expressions as
those found in previous works. In Eq. �79� the MVEF-FC
contribution of Refs. 6 and 4, the field induced spin–orbit
term of Refs. 6 and 9, and the two-body field induced spin–
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orbit term of Refs. 6 and 9 are found. However, from the
computational point of view, the first way of carrying out the
calculations is preferred, since all these contributions �one-
and two-body� are readily taken into account in terms of
one-body operators.

III. RESULTS AND DISCUSSION

Among the different relativistic corrections to the
nuclear magnetic shielding tensor obtained in Sec. II C, the
one combining the SZ-K operator of O3T(B) in Eq. �44�
together with the FC operator and dubbed �M

p (FC,SZ-K) in
Table I is closely related to the term previously obtained by
Fukui et al.6 and quantitatively analyzed by Visscher et al.
and dubbed ‘‘MVEF-FC’’ in Ref. 4. The differences between
those terms are that operator SZ-K in Eq. �44� carries differ-
ent constant factors and has an anisotropic contribution,
while the MVEF-FC term is isotropic. As it was explicitly
shown in Sec. II D the addition of contributions originating
in E(O1T(�M),O3T(B)) and �W2�	 �see Eqs. �68� and �69��
is equivalent to the sum of the MVEF-FC, the ‘‘field in-
duced’’ one-body spin–orbit and the ‘‘field induced’’ two-
body spin–orbit contributions of Refs. 6 and 9 �the ‘‘field
induced’’ spin–other orbit term is not included�. It is impor-
tant to emphasize here that, within the present approach, the
‘‘field induced’’ two-body spin–orbit contribution is obtained
from a calculation involving only one-body operators.

In the present section numerical results are presented.
They correspond to the �M

p (FC,SZ-K) contribution defined
in Table I, and to the contribution originated in W2� , which
will be referred to as �M

d (W2�). HX and CH3X (X�Br,I)
were taken as model compounds. Calculations were carried
out with the DALTON code19 for both the heavy and the light
nuclei in each compound. �M

p (FC,SZ-K) values were ob-

tained at the RPA and SOPPA levels for HX, and at the RPA
level for CH3X. �M

d (W2�) values were calculated for the HF
and MP2 molecular ground state. Geometric structures were
taken from Ref. 20. The gauge origin was placed at the
nucleus position in each case and therefore Eq. �69� holds.
For HX the fully uncontracted sp-aug-ccpVTZ basis set of
Ref. 21 was used. It will be referred to hereafter as basis set
I. For CH3X, the same basis set was used, but only the s and
p-type atomic orbitals �AOs� were uncontracted, and it will
be referred to as basis set II.

Results are displayed in Table II. For the isotropic
nuclear magnetic shielding constant, the �M

p (FC,SZ-K) con-
tribution is exactly 4/3 times the MVEF-FC one in Ref. 4.
The corresponding values are included for comparison.
There is excellent agreement between those values and the
ones of the present work. In Table II it is seen that for the
heavy nuclei X�Br, I the contributions �M

p (FC,SZ-K) and
�M

d (W2�) are large and have an opposite sign. It is also inter-
esting to observe that the corresponding values in HX and
CH3X are very similar, i.e., these contributions are only
slightly sensitive to the change in chemical environment
from HX to CH3X. The insensitivity of the �M

d (W2�) term
can be explained taking into account that this term is propor-
tional to the electronic density at the nucleus site, Eq. �69�.
For the heavy nuclei this density is hardly affected by the
change in chemical environment. The observed insensitivity
of the �M

p (FC,SZ-K) term could be understood by the pres-
ence of p2 in the SZ-K operator. The kinetic energy of the
inner-shell electrons is larger than that of the valence elec-
trons and therefore the main contribution to �M

p (FC,SZ-K)
could be due to the behavior of the inner shell electrons of
the heavy atom, which are almost insensitive to the change in
chemical environment. However a deeper study needs to be

TABLE II. Relativistic corrections �M
p (FC,SZ-K) �Eqs. �44� and �50�� and �M

d (W2�) �Eq. �68�� to the isotropic
nuclear magnetic shielding constant in HX and CH3X. Values in ppm.

Molecule Nucleus
Basis
seta

�M
p (FC,SZ-K) �M

d (W2�)

RPA SOPPA HF MP2

HBr Br I 729.44 �131.25
II 729.24 729.06 �131.25 �131.25
b 724.24

CH3Br Br II 729.30 �131.25
HI I I 2554.71 �465.01

II 2554.22 2553.98 �465.01 �465.02
b 2558.8

CH3I I II 2554.30 �465.01
HBr H I �0.022 ¯c

II �0.020 �0.016 ¯c

b �0.026 ¯c

HI H I �0.024 ¯c

II �0.024 �0.017 ¯c

b �0.026 ¯c

CH3Br C II 3.24 �0.54
CH3I C II 3.23 �0.54
CH3Br H II ¯c ¯c

CH3I H II ¯c ¯c

aBasis set I: fully uncontracted sp-aug-ccpVTZ basis set of Ref. 21. Basis set II: same basis set but only s and
p-type AOs are fully uncontracted.

bThe MVEF-FC value of Ref. 4 is rescaled by a factor 4/3; see text for details.
cAbsolute value smaller than 0.01 ppm.
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carried out in order to obtain definite conclusions on the
origin of these relativistic effects.

The contributions �M
p (FC,SZ-K) and �M

d (W2�) to the
magnetic shielding constant of the H nuclei displayed in
Table II are negligibly small, for both the H directly bonded
to the heavy nucleus in HX and for the H nucleus two bonds
away in CH3X. However, for the C nucleus directly bonded
to the heavy atom in CH3X, the overall value of about 2.70
ppm (X�Br,I) is not negligible in comparison to the spin–
orbit contribution of about 12–14 ppm (X�Br) and 20–40
ppm (X�I).8,22

SOPPA values of �M
p (FC,SZ-K) for the heavy and light

nuclei carried out with basis set II are also displayed in Table
II, as well as the MP2 values of �M

d (W2�). Comparing these
values with the respective RPA and HF ones, it is concluded
that correlation effects yield only very small contributions to
the calculated �M

p (FC,SZ-K) and �M
d (W2�) relativistic cor-

rections to the nuclear magnetic shielding constant in this
case.

IV. CONCLUDING REMARKS

Within the approach followed in this work in order to
obtain relativistic corrections to the nuclear magnetic shield-
ing tensor, different contributions consisting of first, second,
and third order RSPT expressions were found.

On the one hand, contributions originating in the Dar-
win, mass–velocity and spin–orbit corrections to the ground
state wave function are obtained in agreement with previous
works.22,23 It is interesting to point out that in previous cal-
culations of relativistic corrections to the nuclear magnetic
shielding tensor, the Darwin and mass–velocity scalar effects
were included within the ‘‘unperturbed’’ molecular
Hamiltonian.22,23 An alternative approach based on the ze-
roth order regular approximation �ZORA� was presented by
Wolff et al.24

On the other hand, in agreement with Ref. 6, further
contributions are found when the effect of the small compo-
nent of the electronic bispinors is included in the correspond-
ing large component in the presence of the magnetic poten-
tial. This is the case, for example, of the ‘‘field induced’’
spin–orbit contributions, also discussed previously by Vaara
et al.,9 and of the MVEF-FC term of Fukui et al.6 which was
quantitatively analyzed by Visscher et al.4 However, addi-
tional contributions, not previously considered in the bibli-
ography, are obtained within the present approach. These are
the ones indicated as OZ-K and PSO-K in Table I and con-
tributions W� to the diamagnetic term, Eq. �68�. These novel
contributions need careful quantitative analysis and work
along this line is presently being carried out by our group. It
is also interesting to emphasize that within the present ap-
proach one and two virtual pair corrections to the unper-
turbed molecular states were included and the corresponding
contributions to the nuclear magnetic shielding tensor were
obtained. Explicit calculations of the �M

p (FC,SZ-K) and
�M

d (W2�) contributions in HX and CH3X were carried out.
Even though the corresponding contributions to the absolute
value of the nuclear magnetic shielding constant of the heavy
nucleus are very large, they are almost insensitive to the

change of chemical environment from HX to CH3X. Elec-
tronic correlation effects were shown to be very small for
these relativistic corrections in all the cases analyzed in this
work.
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APPENDIX A: TRANSFORMATION OF MAGNETIC
INTERACTION MATRIX ELEMENTS FROM POSITIVE
ENERGY BISPINOR CONFIGURATIONS
TO SPINOR CONFIGURATIONS

For V��•A (e��1, in a.u.� a one body-operator, the
transformation of matrix elements from bispinor configura-
tions to spinor configurations is readily obtained if such re-
duction is carried out for the positive-energy bispinors them-
selves, considering results in Sec. II B, Eqs. �21�–�29�. The
matrix elements of the magnetic interaction operator between
positive-energy bispinors are considered in such a way that
they are approximated by spinor matrix elements, i.e.,

�� i
4��•A�� j

4	���̃ i�O��•A���̃ j	 . �A1�

First, the elimination of the small component is carried out.
According to Eq. �27�,

�� i
4��•A�� j

4	��� i
L�c�� .p �Ri

�1�� .A �

��� .A �R j
�1�c� .p ��� j

L	. �A2�

Second, the large component is written in terms of the ‘‘nor-
malized’’ spinors of Eq. �29�. Expansion through order c�3

yields

�� i
4��•A�� j

4	�Oi j
1 �Oi j

3 . �A3�

The first term is of order c�1,

Oi j
1 ���̃ i�O1��̃ j	, �A4�

where operator O1 is defined as

O1�
1

2mc

�p ,�A�. �A5�

The curly brackets stand for the anticommutator. On the
other hand, the third-order contribution is

Oi j
3 ���̃ i�

1

2mc
��p �� VC�Ei

2mc2 � ��A ��
1

2mc
��A �

�� VC�E j

2mc2 � ��p ��
1

8m2c2 
p2,O1���̃ j	. �A6�

Taking into account that Oi j
3 is of order c�3, the zeroth order

relation,

�VC�E ���̃	�
�p2

2m
��̃	 �A7�

can be used to obtain
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�VC�E ���p ���̃	���p �� �p2

2m � ��̃	����p �,�VC�Ei����̃	

�� ��p �� �p2

2m ��i� .�VC� ��̃	 . �A8�

Applying Eq. �A8�, Oi j
3 can be re-expressed as

Oi j
3 �

�1

8m3c3 ��̃ i�
��p �p2,��A ���2mi�� .�VC ,��A ��

� 1
2
p2,
�p ,�A����̃ j	

�
�1

16m3c3 ��̃ i�2
p2,
�p ,�A����p2,��p ,�A��

�8m� .��VC�A ���̃ j	. �A9�

It is observed that a new operator O3 is defined in Eq. �A9�
from which the third-order matrix elements can be obtained.
It is convenient to split O3 as follows:

O3�A3A�O3B�O3C,

O3A��
1

8m3c3 
p2,
�p ,�A��,

�A10�

O3B��
1

16m3c3 �p2,��p ,�A�� ,

O3C�
1

2m2c3 � .��VC�A �.

Within the Coulomb gauge, results in Eq. �A11� hold,


�p ,�A��2Ap��BT ,
�A11�

��p ,�A���BT�2i� .�A�p �,

where BT stands for the total magnetic field.
Taking Eq. �A11� into account it is seen that O1 and O3A

have singlet and triplet components but O3B and O3C are
triplet operators, i.e.,

O1�O1S�O1T, �A12�

O3�O3S�O3T, �A13�

O1S�
1

mc
Ap , �A14�

O1T�
1

2mc
�•BT , �A15�

O3S�O3AS�
�1

4m3c3 
p2,Ap�, �A16�

O3T�O3AT�O3B�O3C,
�A17�

O3AT�
�1

8m3c3 
p2,� .BT�.

The superscripts S and T stand for singlet and triplet opera-
tors.

The magnetic potential to be considered in order to ob-
tain the nuclear magnetic shielding tensor is

A�AM�AB ,

AB� 1
2B�r , �A18�

AM�
�M�rM

rM
3 .

Explicit expressions can be derived for O1 and O3 corre-
sponding to each of these fields. Inserting the corresponding
magnetic potentials in Eqs. �A14�–�A15� the first order op-
erators in Eqs. �42� and �43� are obtained straightforwardly.
In order to obtain explicit expressions for the third order
operators associated to the uniform magnetic field, the com-
mutator in O3B is explicitly evaluated using Eq. �A11�,

�p2,��p ,�AB���2�� .B �p2�2�� .p ��p .B �. �A19�

Therefore,

O3S�B ���
1

8m3c3 
B .L ,p2�,

�A20�

O3T�B ���
1

8m3c3 �3�� .B �p2��� .p ��p .B �

�4m� .�VC�AB�.

The third-order operators associated to the nuclear magnetic
field can be expressed as

O3S��M ���
1

4m3c3 � �M .LM

rM
3 ,p2� ,

�A21�

O3T��M ���
1

8m3c3 � 3

2
p2�� .BM ��

1

2
�� .BM �p2

�i� .�AM�p ,p2��4m� .�VC�AM � .

As a final point, it is interesting to show that operator
O3B of Eq. �A10�, can be worked out in a different way,

O3B��
1

16m3c3 �p2,��p ,�A� �

��
1

8m2c3 �h�VC ,��p ,�A��

��
1

8m2c3 �h ,��p ,�A���
1

8m2c3 �VC ,��p ,�A�� ,

�A22�

where h and VC stand for the one-body Hamiltonian and
potential from which the zeroth order normalized spin–
orbitals are obtained. The second term in Eq. �A22� can be
expressed as

1

8m2c3 �VC ,��p ,�A����
1

4m2c3 � .��VC�A �

�� 1
2O3C �A23�

and included in the field induced spin–orbit term. When the
operator defined in the first term,
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O3B�h ���
1

8m2c3 �h ,��p ,�A�� , �A24�

is extended to the N-particle state space, it can be expressed
as

O3B�h ���
1

8m2c3 ��
i

h� i �,�
j

��p ,�A�� j ��
��

1

8m2c3 �HSch�U ,�
j

��p ,�A�� j ��
�O3B�HSch��O3B�U �, �A25�

where U stands for the Coulomb interaction between elec-
trons in the many-electron Schrödinger equation. Therefore,

O3�O�3�O�3,

O�3�O3A� 1
2O3C�O3B�U �, �A26�

O�3�O3B�H ���
1

8m2c3 �HSch,�
j

��p ,�A�� j �� .

APPENDIX B: REDUCTION OF MATRIX ELEMENTS
IN EQ. „61… TO SPINOR CONFIGURATIONS

In order to evaluate the corresponding matrix elements
in Eq. �61�, the set of creation and destruction operators

e�

� ,e� ;p�
� ,p�� for electrons and positrons is introduced.

This set and the reference vacuum state �vac	 is obtained
from solutions of the one-body Dirac Hamiltonian h1

D for the
Coulomb field of the �fixed� nuclei in the molecular system.
Alternatively, they can be thought of as originating in the
Dirac–Hartree–Fock scheme. Following the QED picture,
one-body operators are defined introducing normal ordered
products of creation and destruction operators,16,25

Z��
� ,�

�e��Z�e�	e�
�e���e��Z�p�	e�

�p�
�

��p��Z�e�	p�e���p��Z�p�	p�
�p� . �B1�

In Eq. �61� the terms of V that need be considered are those
creating an electron–positron pair when acting on �0N	 �and
on �vac	 for the second term�. As a consequence, the only
terms of X(1) to be included are those destroying an
electron–positron pair. Therefore, Eq. �61� yields

Ediam�1 ���
1

2mc2 �
� ,�
� ,�

�p��X�e�	�e��V�p�	

���0N�p�e�e�
�p�

��0N	

��vac�p�e�e�
�p�

��vac	�. �B2�

Taking into account that

�0�p�e�e�
�p�

��0	��vac�p�e�e�
�p�

��vac	

���0N�e�
�e��0N	�� ,� , �B3�

it follows that

Ediam�1 ��
1

2mc2 �0N�M �0N	, �B4�

being M�VPpX(1)�V(1�Pe)X(1) where Pp stands for a
projector onto ‘‘positronic’’ states and Pe for a projector onto
‘‘electronic’’ states. Operator M in Eq. �B4� is a one-body
operator.

The projector onto ‘‘electronic’’ states can be expressed,
up to order c�2, as

Pe��
e

��e
4	��e

4�

�� �
e

��e
L	��e

L� �
e

��e
L	��e

S�

�
e

��e
S	��e

L� �
e

��e
S	��e

S�
�

�� � 1�
p2

4m2c2� �p

2mc

�p

2mc

p2

4m2c2

� . �B5�

The operator X(1) of Eq. �60� is

X�1 ��
1

2mc
��p ,�A�����2 �V

�� 1

2mc
��p ,�A� 3�A

�A
1

2mc
��p ,�A�

� . �B6�

Taking into account results from Eqs. �B5� and �B6� the op-
erator M in Eq. �B4� can be split in terms of the following
components:

M LL�A2���A �
p2

�2mc �2 ��A ��
1

�2mc �2 ��A ���p �

����p �,��A �� ,

M LS��2��A �� �p

2mc � ��A ��A2� �p

2mc � ,

�B7�

M SL����A �� �p

2mc � ��A �,

M SS�2��A �� �p

2mc � ��A ��A2� �p

2mc � .

Due to the factor 1/2mc2 in Ediam(1), only terms of order up
to c�2 are retained in Eq. �B7�.

Following the arguments in Sec. II B �see Eq. �35�� the
expectation value of the one-body operator M for the mo-
lecular ground state is

�0N��
i

M i�0N	��0̃��
i

Oi�M ��0̃	,

�B8�

O�M ��M LL�
1

8m2c2 
p2,M LL��M LS

�p

2mc

�
�p

2mc
M SL�

�p

2mc
M SS

�p

2mc
,
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where it must be recalled that �0N	 stands for the no-pair
solution to the Breit Hamiltonian and �0̃	 for the correspond-
ing solution to the Breit–Pauli Hamiltonian. Equation �B8�
can be re-expressed to yield Eq. �62�,

Ediam�1 ��
1

2mc2 �0N��
i

M i�0N	

�
1

2mc2 �0̃��
i

Oi�M ��0̃	

�
1

2mc2 �0̃��
i

Ai
2�0̃	

�
1

8m3c4 �0̃��
i

Wi�0̃	, �B9�

W�
�p ,�A�2���A �p2��A ����p �A2��p �

�
p2,A2�� 1
2�A2,p2� .

APPENDIX C: TRANSFORMATION OF MATRIX
ELEMENTS BETWEEN BISPINOR CONFIGURATIONS
TO SPINOR CONFIGURATIONS IN EQS. „54…
AND „72…

The c�1 contribution to the operator shown in Eq. �54�
can be obtained as follows. The magnetic interaction opera-
tor connecting the N particles manifold to the (N�2)-
particles manifold contains matrix elements of order c0,

PN�2VPN��
� ,�

�e��V�p�	e�
�p�

� . �C1�

In order to evaluate Eq. �54� consistently to order c�1, the
Coulomb and Breit two-body operators in H (�) connecting
the N�2 particles manifold to the N particles manifold must
contain one pair destruction operator and one electron exci-
tation,

PNH �� �PN�2� �
����

�p�e��H �� ��e�e�	N�p�e�
�e�e��,

�C2�

where the symmetry of indices has been employed to elimi-
nate a factor of 1

2 and to write only one type of term in Eq.
�C2�. The product of operators shown in Eqs. �C1� and �C2�
acting on an N-particle state leads to products of creation and
destruction operators which, according to the QED picture
must be evaluated as follows:25

N�p�e�
�e�e��e�

�p�
��N�e�

�e�e�e�
����� , �C3�

where the normal ordered product of electronic operators en-
sures the correct elimination of contributions from the
vacuum state.16,25 The resulting operator can thus be ex-
pressed as

PNH �� �PN�2VPN� �
����

C����e�
�e�

�e�e� , �C4�

where

C�������
�

�e��V�p�	�p�e��H �� ��e�e�	

�����e��H �� ��e�e�	,
�C5�

���	�PpV�e�	 ,

where Pp stands for the projector onto ‘‘positronic’’ states in
the one-particle state space. Following a similar procedure to
that carried out in Appendix B in order to transform matrix
elements in Eq. �C5� from bispinors configurations to spinors
configurations consistently to order c�1, the result in Eq.
�55� is obtained.

In order to reduce Eq. �72� from bispinors configurations
to spinors configurations consistently to order c0, the Breit
operator within the (N�2)-particles manifold must be con-
sidered. There is only one c0 contribution. It is the one con-
taining one pair creation and one pair destruction operator,
Eq. �C6�,

PN�2VBPN�2��
� ,�

�p�e��VB�e�p�	N�p�e�
�p�

�e��,

�C6�

where the symmetry of indices has been employed to elimi-
nate a factor of 1

2 and to write only one type of term. In Eq.
�72� a product of three operators needs to be calculated. The
third operator is the magnetic interaction operator connecting
the N�2 particles manifold to the N particles manifold. This
operator is just the adjoint of that in Eq. �C1�. The product of
creation and destruction operators involved in Eq. �72� is
thus

p�e�N�p�e�
�p�

�e��e�
�p�

��N�e�e�
�e�e�

�������� ,
�C7�

and, therefore, the resulting operator within the N particles
state space can be expressed as

PNVPN�2VBPN�2VPN� �
����

C����� e�
�e�

�e�e� ,

C����� ��
�;�

�e��V�p�	�p�e��VB�e�p�	�p��V�e�	

����e��VB�e���	,

���	�PpV�e�	 ,

���	�PpV�e�	, �C8�

where Pp stands for the projector onto ‘‘positronic’’ states in
the one-particle state space. Following a similar procedure to
that carried out in Appendix B in order to reduce matrix
elements in Eq. �C8� from bispinor configurations to spinor
configurations consistently to order c0, the result in Eq. �74�
is obtained.

1 G. A. Aucar and J. Oddershede, Int. J. Quantum Chem. 47, 425 �1993�.
2 S. Kirpekar, H. J. Aa. Jensen, and J. Oddershede, Theor. Chem. Acc. 95,
35 �1997�.

3 L. Visscher, T. Enevoldsen, T. Saue, and J. Oddershede, J. Chem. Phys.
109, 9677 �1998�.

485J. Chem. Phys., Vol. 118, No. 2, 8 January 2003 Nuclear magnetic shielding



4 L. Visscher, T. Enevoldsen, T. Saue, J. A. Jensen, and J. Oddershede, J.
Comput. Chem. 20, 1262 �1999�.

5 Y. Ishikawa, T. Nakajima, M. Hada, and H. Nakatsuji, Chem. Phys. Lett.
283, 119 �1998�.

6 H. Fukui, T. Baba, and H. Inomata, J. Chem. Phys. 105, 3175 �1996�.
7 H. Nakatsuji, H. Takashima, and M. Hada, Chem. Phys. Lett. 233, 95
�1995�.
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