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O Abstract

Despite the significant experimentdf@t made in the last decades, the origin of the ultra-highiggneosmic rays is still largely
unknown. Key astrophysical information to identify wheleese energetic particles come from is provided by their ctem
composition. It is well known that a very sensitive tracethd primary particle type is the muon content of the showeregated
) by the interaction of the cosmic rays with air molecules. Weaduce a likelihood function to reconstruct particle siéas using
00 segmented detectors with time resolution. As an exampléisfgeneral method, we fit the muon distribution at grounellev
I_tusing an array of counters like AMIGA, one of the Pierre Au@diservatory detectors. For this particular case we contpare
2 reconstruction performance against a previous methoch iV new technique, more events can be reconstructed ttfiame b

addition the statistical uncertainty of the measured nurobmuons is reduced, allowing for a better discriminatidithe cosmic
ray primary mass.
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Cll Keywords: Ultra-high energy cosmic rays, Cosmic ray primary mass asitipn, Particle counters, Profile likelihood, Integihte
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1. Introduction predicted by simulations strongly depends on the assumed in
teraction model, the muon data can be used to discriminate

Although the origin of the ultra-high energy cosmic rays is@mong diferent scenarios|(b| 7, 8,9/ 10].
still unknown, significant progress has been recently aeltie In Auger, using the water-Cherenkov detectors of its serfac
from data collected by setups like the Pierre Auger Observadrray, muons have been measured by disentangling them from

o tory @] and the Telescope Arraﬂ [2]. The three main observ-Other shower particles. However this technigue can onlypbe a

L0) ‘ables used to study the nature of cosmic rays are their energdfied when muons produce a large fraction of the total signal

C\l 'spectrum, arrival directions, and chemical compositiorer-C Those special cases include inclined showers with zenith an

O tainly, composition is a crucial ingredient to understanelori-  gle between 62and 80 [g], and also showers close to 60

s ‘gin of these very energetic particl& [3], to find the spécera  However, in this second case, only detectors more than 1000 m

(O 'gion where the transition between the galactic and extaatjal ~away from the shower core are used [7]. To include the more

(O cosmic rays takes place [4], and to elucidate the origin ef th a_bundant_vertlcal showers and to extend the reach to lovegs en

— ‘flux suppression at the highest energ[és [5]. gies, dedicated muon counters are called for. Currentlyefug

For energies larger than ¥V, cosmic rays are studied by iS building a triangular array of muon counters spaced every
.= -observing the atmospheric showers produced when they intef50 M as part of the AMIGA project [11]. Once finished the
7S ‘act with the air molecules. Therefore composition has to bMIGA array will cover 235 kn in a small region of the sur-

(g inferred indirectly from parameters measured in air shaver face detector. The detector is designed to measure showers
servations. The observables most sensitive to the primassm between 3« 1017eV and 16%eV, the upper limit determined
are the depth of the shower maximum and the number of muorl®y the number of events that can be collected given the de-
generated during the cascade process. While the maximufictor size. Each grid location will have three 10 counters
depth is observed with fluorescence telescopes, the muens dpade out of plastic scintillator, buried®m underground, and
measured at ground level and underground with surface arf@vided into 64 scintillator strips of equal size. The thoeein-
buried detectors respectively. Besides composition,dradr  ters installed at each array site are equivalent to a sirghe?3
interactions can also be studied with muons. At the highesietector divided into 192 bars. Muons are counted in time win
cosmic ray energies the hadronic interactions are unknsan, dows of 25ns, the duration corresponding to the detectat dea
models that extrapolate accelerator data at lower cefitneags ~ time given by the width of the muon pulse.
energy are used in shower simulations. As the number of muons Close to the shower core the muons are accompanied by en-

ergetic electrons and gammas. However the soil shieldong si
nificantly reduces the contamination of the detector sijbsl
*Corresponding author: diego.ravignani@iteda.cneaagov. these electromagnetic particles. The soil density at thé@M
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site, 24 g cnT?3, entails a shielding of 22 radiation lengths at 2. Likelihood of a segmented detector

2.5m underground. Using these parameters, shower simula- o ) ) )

tions including the propagation of particles undergrounois 21 Likelihood of a single time bin

that the electromagnetic contamination is negligible in & We built the profile and integrated likelihoods as extension

but very close to the shower cofe [12]. of the single-window likelihood developed in {17]. For com-

pleteness some of the material developed in that work is sum-

AMIGA measures the fall of the muon density with the dis- marised below. We must recall that the main goal of the coun-

tance to the shower axis, i.e. the so-calle@ral distribution  ters used in a cosmic ray observatory is to estimate a particl

function (LDF). The LDF evaluation at a reference distancedensity p). The density multiplied by the detector area &nd

is a long-established method to characterise the size ofran ahe zenith angle cosine of the shower direction is the aeerag

shower [1B]. In the surface arrays of the cosmic ray observaaumber of particles expected in the counjer, (

tories, the LDF is fitted to the detector data by either misimi

ing ay? or by maximising a likelihood function [14, 15]. The W = pacos. 1)

used likelihood, modelling the detector response to inogmi

particles, is specific to each detector type. In this paper wdh t_urn,y is the parameter of a_P0|s_son_ dlstnbutlon that de-
present a likelihood suitable for a particular detectomaly a  SC'IP€S the actual number of particles impinging on thealete

segmented particle counter with time resolution like thegdi Correspondingly, for a detector divided inparts, the number
in AMIGA of muons in each segment fluctuates according to a Poissonian

with parametef:/n.

We fit the LDF to the detector data by maximising a like- The arriving particles produce a signal in some of _the de_-
lihood that links a muon density to the observed signals. WEECtor segments. Occasionally two or more muons pile up in
previously used two likelihood models. In the first method € Same segment. Depgn_dmg on the.nu.mber of particles, each
we adopted an approximation valid for few muons in a detecSegment can take two distinct statest i h't. by one or more .
tor HE]- Using this approach we showed |E|[17] that detector MUONS, anayf otherwise. According to Poisson, the probabil-

. . N . 1 — *H/n
saturate if there are more than 174 muons in a time window. A&V of a segmenbyff is g = ™", and the odds of aon state

consequence events with a core falling less than 100 m from gp=1-q Since thg .segment states are independent from
detector cannot be reconstructed. To enlarge the statistc each other, the probabyhty "’,‘fsegm‘?”“_’” out of a total ofn
later proposed another likelihood model valid for higher-si S€9ments follows the binomial distribution,

nals, thus covering an interval where the detector respdese n n ‘

parts from linearity. In this second case, to obtain an aitaly P(k; 1) = L(u; K) = (k) Pl = (k) et (é‘/” - 1) )
expression, the time resolution of the detector had to be ne-

glected.. This m(_ethod just considert_ad whether a scintillaé® |y addition to a probability, Eq[12) is the likelihood pfex-

has a signal during the whole duration of the event. pected muons whekstrips out ofn areon. If k < n, the corre-

sponding maximum likelihood estimatqr)(is,
Although the second likelihood improved the original one,

grouping muons into a single time window is a drawback since F - —ninl1- If
shower particles arrive at the ground spread in time. For p=-nin ‘
both the electromagnetic and muonic shower components, the

Kascade-Grande array has measured signal widths of 705k = n the likelihood tends to unity whep increases, and
beyond 400 m from the coré [18]. At larger core distancesthe maximum likelihood estimator aftends to infinity. In this
common in larger observatories, the particles arrive everem €ase, the likelihood sets a lower bound to the number of muons
widespread and, consequently, the air shower signals @xtergllowed inthe LDF fit[[17]. Based on this behaviour we labelle
over many 25ns time windows. To make the best use of th&ese detectors asiturated

detector capabilities, we improved the likelihood by intihg The proposed likelihood only considers the detector size an
the signal timing. We started by considering the complée li  Segmentation. This function excludes any signal contatidina
lihood of a segmented detector with time resolution. To gkt r Produced either in the detector electronics or in the phatom

of nuisance parameters present in the full likelihood, we aptipliers. This simplified model of the likelihood is realisbe-
plied two diferent approximations: the profile {19] and the in- cause the AMIGA detector filters out the detector noise. The
tegrated likelihoods [20]. The first technique, well estigd ~ €lectronic noise is filtered by tuning the discriminationde

in the field of high-energy physics, was used in the discoséry applied to the analogue signals produced by the photonfiultip
the Higgs bosori [21]. ers. In turn any casual photomultiplier after pulse is reetbv

by requiring the digital signals to be compatible with atstea
The following section describes the profile and the integgtat tWo photoelectrons [22].
likelihoods, and sectidn 3 illustrates them with exampec- o
tion[d presents the simulations used to evaluate the ligetis.  2-2. Profile likelihood
We compare the performance of the new and old methods in To extend the likelihood to many time bins, one has to con-
sectior[b, and conclude in sect{an 6. sider the time spread of the muon sigda(t)/dt. The number
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of expected muonsyj is the integral of this signal over the
event durationy = % dt. Correspondingly, within a time
bin, the number of muong) is the integral restricted to the

asymptotic conditions are meft(u) is approximately quadratic
in a wide region around.Correspondingly, in the LDF fit, the
detectorf (u) is equivalent to & with ac given by the width of

window limits. The sum of thg;’s is u. the likelihood. The procedure to obtain the profile likelidds
The AMIGA segmented detector counts particles in windowsllustrated in Fig[lL with a signal spread over two time wingo
of 25ns. For each of these time bins, the number of strips
(ki) is computed. Considering that thés of different time win-
dows are independentfrom each other, the likelihoqd pérti-
cles in the-th bin is given by Eq[{2). The likelihood of all time ko= 48
bins(L(w)) is the product of the single-window likelihoods, 80—
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wherei runs over the time bins and= (u1, u2, .. .).

In the LDF fit, the parameter of interest is the total number
of muonsu. However the value ofi alone is not enough to
calculate the likelihood because this function also depeand
each of they;’s. An obstacle arises at this point, the lack of
knowledge of the signal time distributiaiu(t)/dt prevents us
from deriving they;'s from u. We overcame this issue by us-
ing a profile likelihood Lp(u)). Following this approximated
method we searched, for eaghthe likelihood maximum un-
der the restrictior)’ uj = u,

Le() = max L(u).
2 Hi=H

40

My

Figure 1: Contour levels of the function2 InL(u)/Lmax for a signal spread
over two time bins. The parameteus andu, are the numbers of muons in
each bin. In this example the detector is divided inte 192 segments, the
first time bin hask; = 96 barson, and the second one = 48. The red
cross indicates the global maximyiof the likelihoodL(x) and the dotted red
line the corresponding local maxima at constant uj + uz. Two contour
levels defining ther standard-deviation regions pf[19] are displayed. The
continuous blue line corresponds to a cut at a sampte ug + up = 165.
Inset: Function—2 In L(x)/Lmax along the cuj: = 165. The local minimum is

In this treatment of the likelihood, tha’s are nuisance pa- reached ai; = 116.
rameters which are fixed by applying the profiling technique.
We performed the likelihood maximisation with the Minuit
library [23] implemented in the ROOT data analysis frame-2-3. Integrated likelihood
work [24]. For some desirable mathematical properties men- Besides the profile likelihood, another useful techniqugeto
tioned below, we used therofile likelihood ratiodefined as, rid of nuisance parameters is the integrated likelihood.il&h
in the profile technique the nuisance parameters that magimi
Ap) = LP('“). (6) thelikelihood are searched for, in this second method kedi i
Lmax hood is integrated over these parameters. To introducetbe i
wherelLnax is the global maximum of the likelihood calculated grated likelihood, let us first rewrite the nuisance paramseas
without any restriction om. The likelihood reaches this maxi- p; = ui/u. Consequently the conditiof i = w is now given
mum whena = (i1, iz, . . . ), all given by Eq.[(B). From Eq[16) by Y pi = 1. Considering this restriction and the single bin
one can see thatvaries between 0 and 1, the maximum valuelikelihood of Eqg. [2), the integrated likelihood can be weit

attained at, as,
=) W)

A A close to unity means a likely value pfgiven the observed
data, i.e. au close toy. On the other hand, a lowimplies an
unlikely p.

Providing certain conditions are met, the distribution of
f(u) = —2InA(u) approaches &2 distribution, independently
from the nuisance parameter valles [25]. For a segmenttid parwhereN is the number of time bins ani{x) is the Dirac delta
cle counter, these requirements translate to having maoysu function.

However the number of particles must not be so high as to sat- In most cases, the integral in EQ] (8) has to be calculated nu-
urate the detector. An upper limit to the number of muons igmerically, however for the case of two time intervals an ghal
approximately three times the number of detector stripss Th expression can be obtained (see §ed. 3.2). The integrkéed li
bound corresponds to the probability of a segneerio be 0.95.  lihood requires the calculation of multidimensional ing

In most formal terms, this condition is equivalent to askimgt ~ which we computed using the VEGAS aIgorith@[ZG] imple-
the binomial distribution of the window with more muons can mented in ROOT. The computation of many time bins takes a
be approximated by a Gaussian. Considering the values takdéong time; so we reduced the number of involved integrals by
by 4, f(u) is always positive and drops to zerqatfthe quoted  calculating all the intervals having the sarkewith a single

3

(®)

N
Llw)«foldm---foldmﬂexp(—u )
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x (explu pi/n) — 1) 5(2 pi — 1),
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integral. Applying this optimisation (s¢e Appendi§ A for-de 3.2. Example for two time bins

tails_), we arrive_d to the following approximated expressid The evaluation off (1) = —-2InA(u) requires a numerical
the integrated likelihood, minimisation to calculate the profile likelihood. Howevaer,
) ., < the special case of only two time windowqu) has the ana-
my mg lytic expression,
I—I(,U)ocf dpl---f deHeXp(—#pim) Y e®
0 0 i=1 o
q ©) fu) =2u-2 " olk] (lq In(ki/n)
x (expla p/m) - DF ™ P [Z pim - 1]’ N 2
i=1

+(n-K) (L~ k/m) - k In(€4/" - 1) ),

wherem is the multiplicity of thek; value andN is the number

of k; values that are dierent among them whereyu; andu; are the number of muons in each time window.

These values correspond to the local maximum of the likeliho
at constant;; + 2 = p. The functions[k;], used to include the

3. Likelihood examples case ok = 0, is zero ak; = 0 and one otherwise. The value of
pi s,
3.1. The few muons limit
So far we presented the complete likelihood of a segmented —nin (— M+ (e )2 + 5 e—u/n) if k; >0
detector and two dierent approximations applied to get rid of 1) = )
nuisance parameters. It is a desirable mathematical gyoper 0 ifky = 0.
that, in some limiting case, the approximations and the full (13)

method converge to the same function. This condition is me@orr.etspondinglyz; is p — py. The fur_mti-onf(,u) depends op

by the three introduced likelihoods if the number of muons is€XPlicitly as per Eq.[(12) and also indirectly through yyes.

small compared to the number of detector segments; in this ca!f ki = ke, it can be seen from Ed. {I3) that = 5 = u/2.

all of them tend to a Poisson distribution. Below we calaulat Y& exploited this degeneracy, also present in the genesal ca

this limit for each method. of more than two time bins, to reduce the number of nuisance
The demonstration for the full likelihood starts with the Parameters. By using fewer free parameters, we optimised th

single-window likelihood of Eq.2). Ifs < n, the binomial numerical minimisation run to evaluate the profile likeliub

distribution ofki can be approximated by a Poisson distribution IS0 for the integrated likelihood technique it is possitde

with parametegs. Then the distribution of the variabke= 3" k find an analytic expression of the likelihood as a functiom of

follows a Poissonian with paramefer 3 ui. The correspond- Which is given by,

ing likelihood is, K ke e fk
k 1] (K2 Kg-+ko—i—j
s i) =exptr) D 3 (1) () ot
L(u) R (10) ; ]Z; i)\ (14)
The function of Eq.[{Z0) does not depend on the individual x &, i, j, ),

nuisance parameters but on their sum, i.e. the likelihood is
profiled. For the integrated likelihood, the independerfdbe ~ Where,
distribution on the nuisance parametprsllows the extraction

of the integrand in Eq[{8) to arrive to, expl j/n) =]
: I Gbim=) expuim -expuim |, 09
L) = e [ apeee [ dm] ](2) D)
i=1

N I We show next a comparison of the likelihoods correspond-

x 5(2 pi — 1), ing to the two-window example of sectign R.2. The dotted

i1 red line in Fig.[1 shows the local maxima of the likelihood

o explp) 15, (11) L(u) at different values ofi. The likelihood is evaluated along

this curve to calculatd(u) = —2InA(u) via the profile like-
which corresponds to a Poisson likelihood. One has to censid lihood. Thef(u) corresponding to the single-window, profile,
that the Poisson approximation is only valid in the limitadge  and integrated likelihoods are shown in the top panel of[Big.
of smallu. In the fit, the approximation must hold for likely The maximum likelihood estimator of the number of muons is
values ofy, i.e. the region around the likelihood maximym ~ & = i3 + i = 1883 for both the profile and the integrated
In terms of the data, this condition is equivalent to askimg,t likelihoods. The number of stripsnrequired in single-window
via Eq. [3).k ~ ui < n. Therefore, if the number of segments likelihood to produce the sameas the other two binned meth-
on is small compared to the detector segmentation, the exaabds, derived from Eq[{3), is = k; + k> — kiko/n. For the par-
the profile, and the integrated likelihoods are well appratied  ticular example ok; = 96 andk, = 48, the equivalent number
by the same Poisson function. of barsonin the single-window likelihood i& = 120. FiguréR



displays the & and 2r confidence intervals defined by the con- 4. Simulations
ditions f (1) = 1 andf (u) = 4 respectively. Thé (u) of the pro-
file and integrated likelihoods are very similar and havelena  We tested the performance of thefdrent likelihoods with
confidence intervals than the exact likelihood. The regmiut air showers simulated with CORSIKA v7.3700][27] using the
is enhanced with the two approximated methods because théygh energy hadronic model EPOS-LHC[28]. We simulated
consider the detector timing. proton and iron primaries in the energy interval lg(&/eV) €
The single-window likelihood saturates earlier than the-pr [17.5,19] in steps ofA log;o(E/eV) = 0.25 for the zenith an-
file one. While in the first case the variatkef Eq. (2) corre-  gleso = 0°, 30°, and 43. In the simulations, we applied an
sponds to the bars that have a signal over the whole event duralgorithm with an optimal statistical thinning of 10that re-
tion, thek;’s of the profile likelihood refer to a single time bin. duced the number of tracked particles. We produced twenty
Since this second method spreads the signal over many tinfgoton and fifteen iron showers for each energy and zenith an-
bins, k is greater thark;. Therefore the saturation condition, gle combination. For each simulation we recorded the number
i.e. all barson, is reached in the single-window likelihood with of muons crossing a 30%rarea placed . m underground as
fewer muons than in the profile method. Because the integjratgn the AMIGA detectors. We considered the shielding of the
and the profile likelihoods rely on the same signal binnirghb ~ Soil by selecting muons with energy greater than 1 Gedso,
techniques saturate identically. with 6 the zenith angle of the muon. We computed the average
The likelihoods corresponding to an event with two time number of muons as function of the distance to the showey axis
bins, of which the first one is saturated, are displayed in théneasured at shower plane, over each set of simulated show-
bottom panel of Figl]2. In this example the profile likelihood ers and fitted these values with a Kascade-Grande-like muon
imposes a more stringent limit than the single-window metho LDF [14]. We also produced histograms of the muon arrival
to the number of muons. Although the integrated likelihoodtimes at diferent core distances. Figure 3 shows the average
f() has a minimum, in practice it only works as a lower boundLDF and Fig[# the arrival time histograms at 3fdrent dis-
by imposing a large penalty to smalk. tances for 1 EeV iron showers arrivingéat 30°. The arrival
time histograms show the fraction of particles arriving 51n2
time bins with respect to the total number of muons. We only
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~ — Integrated quired to break through the soil shielding. The histogrames\s
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Figure 3: Average muon lateral distribution function fittedthe simulated
n=192 detector data (continuous blue line). The fitted data cpoed to the average
k.= 192 number of muons in the AMIGA detectors calculated with siatiohs of iron
2 k1— % primaries with energye = 1EeV and zenith anglé = 30°. An example
» 2" of the AMIGA response to a single shower of the same type is sff®own
N for comparison, together with the corresponding fit of a KaecGrande—like
muon LDF (dotted red line).
PEXXTTrrre

1000 1500
u For a given energy and zenith angle we sampled each average

Figure 2: Single-window, profile and integrated likelihgofbr a detector di-  shower many times varying the azimuth angle and the impact
vided into 192 segments. The parametds the number of muons in the de- position onthe ground. We adjusted the simulated showeis wi
tector. Top: Counter withy = 96 andk, = 48 segment®n in the first and R . . i . .

second time bins respectively (same example of[fig. 1). Hosingle-window the smgle-wmdow, proflle and mtegrated likelihoods. The
likelihood we assumeki = 120 segmentsn. Bottom: Saturated detector with tegrated likelihood evaluation, involving multidimensal inte-
192 and 96 barsnin the first and second time bins, respectively. grals, requires a much larger computational time than tbler

likelihood. Therefore we usedftierent numbers of events with



each method; we sampled each shower 1 000 times for the islopes by minimising the function,

tegrated likelihood and 10 000 times for the other two meshod

Since the processing budget also increases with primarggne =2 InLyjt(uo. B) = -2 Z In i (u(ri, 1o, B)), (18)

for the integrated likelihood we only reconstructed shangy i

to log,o(E/eV) = 185. .
For each sampled event we calculated the distance of th\gh_erehthfe sum runs %ver tg? detegtors. 2For|fjthe %ounter,

counters to the shower axis. Then we evaluated the averagé 'S (€ lﬂ]c“fm mt(rjo uc$ hmfgectlﬁhlz. ' ?}n ;t € core

LDF at each distance to find the number of muons expected i |stanceb eflnpyt ata o ,t € |t.aée, t roug ;’h nctlonsF,

each counter). Usingu as a parameter, we sampled the actuaf"® num edr of stripsn per tlmg window in (la_li\cl_hco%nter. For

number of muons from a Poisson distribution. We considered 4"trggered counters we used a Poisson kelinood, sedmg

detector asintriggeredif it received two or fewer muons. We UPPErlimit to the number of muons allowed in the LDF fitas in

obtained the arrival time of each muon by sampling the timé}?ef' m].l FlghureEB shows Lhe fit (1?]; trll_i dl_ehtec':jor data simdlate

distribution histograms and calculated the number of muons or a single shower using the proiile likelinood.

each 25 ns time bin accordingly. In a second step we randomly

distributed the muons across the detectpr and cglculat_wd hog  Reconstruction performance

many segments wen. The number of stripen per time win-

dow is the input data to build the likelihood of each detector | this section we evaluate the performance of the recon-

We computed the maximum of this likelihood to obtain an esti-girctions using the single-window, profile, and integuiditee-
mator of the muongy,in each detector using EqI (7). Figllle 3 |inoods. For this assessment we compared the bias and the fluc
shows, for a single shower, theof each triggered detector. The tyations of theu, inferred with each method. In addition to the
untriggered counters are represented in this plotwith aw  properties of this point estimator, we also look at the size o
row. For each simulated event we adjusteas function of the  the , confidence intervals derived from the LDF reconstruc-
core distance with a second Kascade-Grande-like muon LDkions. For brevity we only show the results of iron primaries
The energy reconstruction of the events is based on the-evalyy g = 3¢r; the proton showers and the other simulated zenith
ation of the fitted LDF at an optimal distanag)(at which the  angles have similar outcomes.

spread of the LDF is minimal [13]. For reasons that will be
explained later, it is convenient to make of the LDF valueyat

. . . . 5.1. Saturation
a parameter of this functiond). To isolate this parameter we

factorised the LDRu(r)) into a normalisation factaig and a The fraction of saturated events increases with the primary
second functiomy(r), energy as the signal deposited in the detectors raises.nGive
q(r) that signals are spread in many time bins, detectors saturat
u(r) = po— —- (16)  less with the profile and the integrated likelihoods tharntite
9(ro) single-window method. Figufd 5 displays the fraction ofisat
The functiong(r), containing the distance dependence, is,  rated events with respect to the total number of simulatedtsv
F\ F\P r 27 as function of energy for the profile and single-window recon
o) = (—) (1+ —) (1+ (W) ] , (17)  structions. The integrated likelihood, using the same tivite
n f 1 dow size, has the same saturation as the profile method. Since

wherer is the distance to the shower axis in the shower front40% of the events saturate at |gti=/eV) = 18.75, we cut the
a = 0.75,r; = 320m, andy = 2.95. We adjustedy and the analysis of the single-window likelihood at this energy.

3
= | —200m
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04—
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Figure 4: Average time histograms at thre@etient distances to the shower
axis measured at the shower plane. The bin size of 25ns porréds to the
detector time resolution. The histograms show the fraatibmuons in each
time bin.



For the comparisons we only selected events which have afllose toro = 450 m. This is, therefore, the optimal distance to
detectors free of saturation. We excluded saturated ebents measure the number of muons with AMIGA. The value of the
cause their shower size parameters are reconstructed gigjh a reconstructed LDF aty is taken as the shower size estimator
nificant bias |L_:L|7]. Given the steepness of the lateral digtri  (a(450)).
tion of shower patrticles, saturation happens mainly inatets The optimal distance of a segmented detector array like
close to the core. In these detectors the muon signal may al#tMIGA depends on the primary type, energy, and zenith angle.
be contaminated by electromagnetic particles and hadRyes. However thes(r) value at the optimal distance of each specific
liminary simulations of AMIGA show that this contamination shower type and the corresponding valugyat 450 m difered
is below 1% at 100 m from the shower core (J. M. Figueira, perin less than % in all simulations. Therefore the convenience
sonal communication, 21 April 2016). This distance is lessit  of adopting a single optimal distance for all events outlsig
the average distance of the nearest detector to the showeer coany resolution loss introduced by not using &etient optimal
which is 230 m according to Ref. [16]. More detailed simula-distance for each shower type. In addition, the optimal dis-
tions are currently under way to study the punch trough af-ele tances of the single-window and integrated likelihoodszdse
tromagnetic particles. These simulations will confirm viieet close torop = 450 m. So, to ease the comparison between the
the punch trough can be neglected or not. If the contaminatiodifferent methods, we adopted the sag#or all of them.
effect has to be considered, the current likelihood model will
have to be updated accordingly.
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o (IlEgleV) Figure 6: Relative standard deviation of the lateral distion function recon-
910 structed using the profile likelihood. The curve correspsotach global average

Figure 5: Fraction of saturated events for iron primarieg at30°. The inte- calculated using all simulated showers. Aminimum is rediese to 450 m.

grated likelihood has the same saturation as the profile adetfihe detector . ) ) ) )
saturates more with the single-window likelihood than vt other two meth- Given the fluctuations in the detector signals, the fitted

ods. [1(450) varies across reconstructions of the same shower. Fig
ure[? shows histograms of th€450) reconstructed with the
profile, integrated, and single-window likelihoods for Mee

< _ iron showers arriving a## = 30°. The three histograms coin-
The statistical fluctuations of the detector data are cabged cide within statistical uncertainties. Since ten times leson-

the combined contributions of the finite number of muons andgtructions were run for the integrated likelihood, its datae

the detector segmentation. These variations propagabtegdur |arger error bars than the other two methods. The plot also di

the fit to the estimated LDF parameters, introducing fluctuaplays a Gaussian distribution parametrised with the mean an

tions in the reconstructed LDF. We evaluated the standard dehe standard deviation of the profile likelihood histografhe

viation of the fitted LDF as function of the core distano€r))  distributions ofu{450) are well described by the Gaussian. In

using this example th@(450) distributions are unbiased, i.e. the his-

5 IR Qui(r) - aln)? togram means match th€450) of the input LDF. For the three

o(r)” = N-1 ’ (19) considered likelihoods the relative standard deviatioi(450)

whereN is the number of simulationg; corresponds to thie IS Closes(450)= 6%. In the shown example, thg450) distri-

th reconstructed LDF, andto they’s average. We calculated Putions of the three likelihoods are similar because theveho

the relative standard deviation of the LD&)) dividing o(r) ~ #(450) is much smaller than the 192 segments of the AMIGA

by /. The functions(r) represents the accuracy with which the detector.

array reconstructs the muon number dfatient distances. We )

derived first ane(r) for each simulated primary type, shower 5-3. Bias

energy, and zenith angle, respectively. Afterwards we ddde The comparison of the inpyi(450) and the correspond-

these functions in quadrature to obtain a global resolujér). ing value fitted afterwards to the simulated data is a vakiabl

Figure[® shows they(r) corresponding to reconstructions with method to assess the reconstruction performance. We éstima

the profile likelihood. The functiosy(r) reaches a minimum the bias as the fierence between the averagd50) calculated

7

5.2. Optimal distance




over the reconstructions and the input50). As the recon- alow standard deviation allows for a good estimatiop(@b0)
structedu{450) changes according to the likelihood applied inusing the data from a single event, a snagl50) is a desirable
the LDF fit, theu{450) bias can also vary among théfeient  property of the reconstructed450).
methods. Figurgl8 shows their relative biases, calculadlea For the four evaluated likelihoods, we estimated #{é50)
bias overnu(450), versus energy. The case of an ideal detectorglative tou(450) (i.es(450)). Figurd® shows the correspond-
that counts particles without any pile-ufiext, is also included ing £(450) as function of energy for iron showersgat 30°.
in the comparison. The likelihood used for this detectohass t The £(450) improves with energy because showers contain
Poissonian, more muons; with more particles more detectors are trighere

L(u) = e /1_" (20) and counters have higher signals. Td{é50) calculated with

k! the four methods is similar up to 1 EeV. At higher energies the
wherek is the number of counted particles. All observed bi-profile reconstruction has a better resolution than theleing
ases are of the order of 1% or less, the four methods can beindow one. With the single-window likelihood the resotuti
considered as unbiased. flattens as muons start to pile up in the counters. Tihece
is more noticeable at high energy, when there are more muons

N

< and therefore they accumulate more. On the other hand, by us-
o L o Profile o Integrated ing the profile and integrated likelihoods muons distribmter
© A Single v Ideal . . . .
a L many time windows, so there are fewer muons per time bin
than in the single-window case. TB50) of the integrated
r 5 o o and profile likelihoods are close up to Ig¢E/eV) = 185,
g S - F T S A e % ......... S the highest simulated energy for the integrated likelihcbiae
o 9 v v ideal counter sets a lower bound to #(@50) achievable with
A an AMIGA like array of 30 m detectors. In the considered en-
oo ergy range, the(450) of the profile likelihood is almost similar

L to this best case scenario.

) | | | |

17.5 18 18.5 19
log, (E/eV) 5.5. Coverage

. - The bias and standard deviation are properties of point esti
Figure 8: Relative bias of number of muons at 450 m from theveha@ore. . . .
Reconstructions with the profile, integrated, and singledaw likelihoods to- _mators I'ke’ in this casgy(450). _On the_ other hand'_ coverage
gether with the case of an ideal particle counter are showmbserved biases IS the main measure of the confidence interval quality. Fohea
are of the order of 1% or less. event the & errors of the LDF normalisation(450) and the
slope parametes are calculated during the reconstruction by
setting—2 InL¢; in Eq. (I8) equal to one. We parametrised the
5.4. Standard deviation LDF with 4(450) in Eq. [I) to obtain its confidence interval
The second quantity used to evaluate the reconstruction pedirectly from the fit procedure. The coverage of a confidence
formance is the standard deviation of fi@50) reconstructed interval is defined as the probability it contains the trukiga
in the LDF fit (0-(450)). Theo(450) measures the fluctuations of the estimated parameter. For example, the coverage of the
of the 1(450) fitted for a single event around the mean calcu-lo interval of a Gaussian distribution is@8. In the more gen-
lated over all events. Since the combination of a small biaks a eral case of a distribution approximately Gaussian the reove

o Profile Mean 52.3
o Integrated oy RMS 3.11
A Single Eh
01l - Gaussian % 2

éﬁ %%} Simulated p(450) = 52.25
0.05 |— % /@/

A’g ﬁﬁg

0 ] M;é' 1 3 . igﬁn@ " 1

40 50 60 70
Fitted p(450)

Event Fraction

Figure 7: Distribution of the reconstructed number of muai$50 m from the
shower axis using the profile, integrated, and single-windkelihoods. The
data of this and the following plots correspond to simulaiof 1 EeV iron
showers at = 30°. The histogram mean matches the simulatét50).



age is expected to be close to this value. If the data errers athe integrated likelihoods. Both likelihoods extend a jas
underestimated, or conversely the likelihood is too nartbe  approach by considering the detector timing. Although we ap
coverage of the confidence intervals derived from the fit @n bplied the likelihoods to a specific cosmic ray detector, tbay
significantly lower than the Gaussian value. This propesty i be used for any kind of segmented particle counters with time
equivalent to the higly? produced in a fit when data errors are resolution. We found an optimal distance of 450 m to measure
underestimated. In this sense, coverage is another way &f methe shower size parameter in a triangular array with 750 m be-
suring the goodness of a fit. But while th&usually refersto a  tween detectors. The new likelihoods improve the reconstru
single fit, coverage quantifies quality over many events. tion in two aspects. Firstly, by raising the number of muons a
We estimated the coverage of ti@50) confidence intervals detector can handle before saturating, more events can-be re
as the fraction of reconstructed events that included,imitie  constructed. The recovery is more significant close to 10 EeV
mentioned intervals, the input value used in the LDF simulathe upper limit of the considered energy range, a region &her
tions. Figurd_ID shows the coverage of the reconstructibns events are usually scarce. Secondly, we reduced the istatist
an iron primary at) = 30° at different energies. This plot also cal fluctuations of the parameter that measures the shogeer si
shows the coverage of the-interval corresponding to a Gaus- from 1 EeV upwards. This decrease allows for a more power-
sian distribution. The coverage of all reconstructionscose  ful discrimination between elierent primary masses based on
to each other and to the Gaussian reference. the number of muons. By comparing to an ideal muon counter,
we established that the resolutions achieved with the riew li

forl
o

s o Profie o Integrated Iihoo_ds are close to the lower bound given the dgtectpr side a
o s Single v Ideal spacing. We also showed that the approximations introduced
g - for the profile and integrated likelihoods do not bias the re-
3 constructed shower size parameter and kept the coveratge of i
© 1o confidence interval close to the expected Gaussian nominal
70 |- . o q value.
""" gimgvgi The shower size parameters reconstructed with the inegyrat
v 9 “ v and the profile likelihoods are very similar. Nevertheldss t
e o ° profile likelihood is the preferred reconstruction methaceg
the much shorter time it takes to process the data. The cor-
s L—L - - ! respondence between the profile and the integrated liladiho

19 H
log, (EleV) results, shows the robustness of these techniques to taetins

the muon lateral distribution with an array of segmentedheou
Figure 10: Coverage of therlconfidence interval ofi(450). The dotted line  ters.
shows the coverage of a Gaussian distribution. The cover&tpe four recon-
struction methods are approximately similar to each othdrta the Gaussian
value. Appendix A. Integrated likelihood multiplicity

In order to prove Eq[{9) let us write Ed (8) in the following

. wa il
6. Conclusions Y

; 1 1 N N
We introduced two dierent methods to reconstruct the lat-
L = dp;--- d f(pi, ki) o -1, (Al
eral distribution function of air shower muons: the profifela 16 ﬁ = j(; - l:l[ (P [Zl: : ] (A0

15
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Figure 9: Relative standard deviation of the muon densi#58tm from the
shower core. The uncertainties of the four shown methodssiandar up

to log,o(E/eV) = 18; at higher energies the reconstruction with the single-
window likelihood has less resolution than the other thizses.
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wheref(pi, k) = expu pi) (expl pi/n) — 1)Y. Then, if there  just the zero order of the Taylor expansionhadt g = (¢, ..., &)
aremtime intervals that have the saikét is possible to choose the following expression fag is obtained,

the firstm values ofi such thatk; = --- = k,, = k. Let us 1 1
consider the integral, m f(¢, k)mf dp1~-~f dpm-1
0 0

IR

9(¢. k. m)

1 m m m-1
fdx&(x—Zpi]z(a(l— pi]zl, (A.2) 0 mf—Zpi
0 i=1 i=1 —
where®(x) = 1if x > 0 and®(x) = 0if x < 0. Hereitis ~ L (g, k)M (A.8)
used thaty ", pi < 1. If the change of variablg = m ¢ is (m-1)! T '
considered, EQL(AI2) is written as, Then, inserting Eq{AI8) in EG_{A.4) we obtain,
1/m m 1 1 1/m N
mm
mf dg&[mg— pi]zl. (A.3) L g—f d f d f d f(pi. ki
; ; 60 =Ty |, AP | dpy | fi:];[l (pi. k)
Therefore, inserting Eq.{A.3) in Eq.(A.1) and integratowgr 1 N
pm the following expression is obtained, f& ™™ 5|mé+ Z pi—1y.
i=m+1
N (A.9)

1_[ f(pi, ki) Therefore, Eql{9) is straightforwardly obtained from E&.9).

i=m+1

Llw)=foldnml---foldmfol/md§
6[m§+ ZN: pi —

i=m+1

(A.4)
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