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Abstract

Despite the significant experimental effort made in the last decades, the origin of the ultra-high energy cosmic rays is still largely
unknown. Key astrophysical information to identify where these energetic particles come from is provided by their chemical
composition. It is well known that a very sensitive tracer ofthe primary particle type is the muon content of the showers generated
by the interaction of the cosmic rays with air molecules. We introduce a likelihood function to reconstruct particle densities using
segmented detectors with time resolution. As an example of this general method, we fit the muon distribution at ground level
using an array of counters like AMIGA, one of the Pierre AugerObservatory detectors. For this particular case we comparethe
reconstruction performance against a previous method. With the new technique, more events can be reconstructed than before. In
addition the statistical uncertainty of the measured number of muons is reduced, allowing for a better discrimination of the cosmic
ray primary mass.

Keywords: Ultra-high energy cosmic rays, Cosmic ray primary mass composition, Particle counters, Profile likelihood, Integrated
likelihood

1. Introduction

Although the origin of the ultra-high energy cosmic rays is
still unknown, significant progress has been recently achieved
from data collected by setups like the Pierre Auger Observa-
tory [1] and the Telescope Array [2]. The three main observ-
ables used to study the nature of cosmic rays are their energy
spectrum, arrival directions, and chemical composition. Cer-
tainly, composition is a crucial ingredient to understand the ori-
gin of these very energetic particles [3], to find the spectral re-
gion where the transition between the galactic and extragalactic
cosmic rays takes place [4], and to elucidate the origin of the
flux suppression at the highest energies [5].

For energies larger than 1015 eV, cosmic rays are studied by
observing the atmospheric showers produced when they inter-
act with the air molecules. Therefore composition has to be
inferred indirectly from parameters measured in air showerob-
servations. The observables most sensitive to the primary mass
are the depth of the shower maximum and the number of muons
generated during the cascade process. While the maximum
depth is observed with fluorescence telescopes, the muons are
measured at ground level and underground with surface and
buried detectors respectively. Besides composition, hadronic
interactions can also be studied with muons. At the highest
cosmic ray energies the hadronic interactions are unknown,so
models that extrapolate accelerator data at lower centre-of-mass
energy are used in shower simulations. As the number of muons
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predicted by simulations strongly depends on the assumed in-
teraction model, the muon data can be used to discriminate
among different scenarios [6, 7, 8, 9, 10].

In Auger, using the water-Cherenkov detectors of its surface
array, muons have been measured by disentangling them from
other shower particles. However this technique can only be ap-
plied when muons produce a large fraction of the total signal.
Those special cases include inclined showers with zenith an-
gle between 62◦ and 80◦ [8], and also showers close to 60◦.
However, in this second case, only detectors more than 1000 m
away from the shower core are used [7]. To include the more
abundant vertical showers and to extend the reach to lower ener-
gies, dedicated muon counters are called for. Currently Auger
is building a triangular array of muon counters spaced every
750 m as part of the AMIGA project [11]. Once finished the
AMIGA array will cover 23.5 km2 in a small region of the sur-
face detector. The detector is designed to measure showers
between 3× 1017 eV and 1019 eV, the upper limit determined
by the number of events that can be collected given the de-
tector size. Each grid location will have three 10 m2 counters
made out of plastic scintillator, buried 2.5 m underground, and
divided into 64 scintillator strips of equal size. The threecoun-
ters installed at each array site are equivalent to a single 30 m2

detector divided into 192 bars. Muons are counted in time win-
dows of 25 ns, the duration corresponding to the detector dead
time given by the width of the muon pulse.

Close to the shower core the muons are accompanied by en-
ergetic electrons and gammas. However the soil shielding sig-
nificantly reduces the contamination of the detector signals by
these electromagnetic particles. The soil density at the AMIGA
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site, 2.4 g cm−3, entails a shielding of 22 radiation lengths at
2.5 m underground. Using these parameters, shower simula-
tions including the propagation of particles underground show
that the electromagnetic contamination is negligible in AMIGA
but very close to the shower core [12].

AMIGA measures the fall of the muon density with the dis-
tance to the shower axis, i.e. the so-calledlateral distribution
function (LDF). The LDF evaluation at a reference distance
is a long-established method to characterise the size of an air
shower [13]. In the surface arrays of the cosmic ray observa-
tories, the LDF is fitted to the detector data by either minimis-
ing aχ2 or by maximising a likelihood function [14, 15]. The
used likelihood, modelling the detector response to incoming
particles, is specific to each detector type. In this paper we
present a likelihood suitable for a particular detector, namely a
segmented particle counter with time resolution like that used
in AMIGA.

We fit the LDF to the detector data by maximising a like-
lihood that links a muon density to the observed signals. We
previously used two likelihood models. In the first method
we adopted an approximation valid for few muons in a detec-
tor [16]. Using this approach we showed in [17] that detectors
saturate if there are more than 174 muons in a time window. As
consequence events with a core falling less than 100 m from a
detector cannot be reconstructed. To enlarge the statistics we
later proposed another likelihood model valid for higher sig-
nals, thus covering an interval where the detector responsede-
parts from linearity. In this second case, to obtain an analytic
expression, the time resolution of the detector had to be ne-
glected. This method just considered whether a scintillator bar
has a signal during the whole duration of the event.

Although the second likelihood improved the original one,
grouping muons into a single time window is a drawback since
shower particles arrive at the ground spread in time. For
both the electromagnetic and muonic shower components, the
Kascade-Grande array has measured signal widths of 70 ns
beyond 400 m from the core [18]. At larger core distances,
common in larger observatories, the particles arrive even more
widespread and, consequently, the air shower signals extend
over many 25 ns time windows. To make the best use of the
detector capabilities, we improved the likelihood by including
the signal timing. We started by considering the complete like-
lihood of a segmented detector with time resolution. To get rid
of nuisance parameters present in the full likelihood, we ap-
plied two different approximations: the profile [19] and the in-
tegrated likelihoods [20]. The first technique, well established
in the field of high-energy physics, was used in the discoveryof
the Higgs boson [21].

The following section describes the profile and the integrated
likelihoods, and section 3 illustrates them with examples.Sec-
tion 4 presents the simulations used to evaluate the likelihoods.
We compare the performance of the new and old methods in
section 5, and conclude in section 6.

2. Likelihood of a segmented detector

2.1. Likelihood of a single time bin

We built the profile and integrated likelihoods as extensions
of the single-window likelihood developed in [17]. For com-
pleteness some of the material developed in that work is sum-
marised below. We must recall that the main goal of the coun-
ters used in a cosmic ray observatory is to estimate a particle
density (ρ). The density multiplied by the detector area (a) and
the zenith angle cosine of the shower direction is the average
number of particles expected in the counter (µ),

µ = ρa cosθ. (1)

In turn, µ is the parameter of a Poisson distribution that de-
scribes the actual number of particles impinging on the detector.
Correspondingly, for a detector divided inton parts, the number
of muons in each segment fluctuates according to a Poissonian
with parameterµ/n.

The arriving particles produce a signal in some of the de-
tector segments. Occasionally two or more muons pile up in
the same segment. Depending on the number of particles, each
segment can take two distinct states:on if hit by one or more
muons, andoff otherwise. According to Poisson, the probabil-
ity of a segmentoff is q = e−µ/n, and the odds of anon state
is p = 1 − q. Since the segment states are independent from
each other, the probability ofk segmentson out of a total ofn
segments follows the binomial distribution,

P(k; µ) = L(µ; k) =

(

n
k

)

pk qn−k
=

(

n
k

)

e−µ
(

eµ/n − 1
)k
. (2)

In addition to a probability, Eq. (2) is the likelihood ofµ ex-
pected muons whenk strips out ofn areon. If k < n, the corre-
sponding maximum likelihood estimator ( ˆµ) is,

µ̂ = −n ln

(

1−
k
n

)

. (3)

If k = n the likelihood tends to unity whenµ increases, and
the maximum likelihood estimator ofµ tends to infinity. In this
case, the likelihood sets a lower bound to the number of muons
allowed in the LDF fit [17]. Based on this behaviour we labelled
these detectors assaturated.

The proposed likelihood only considers the detector size and
segmentation. This function excludes any signal contamination
produced either in the detector electronics or in the photomul-
tipliers. This simplified model of the likelihood is realistic be-
cause the AMIGA detector filters out the detector noise. The
electronic noise is filtered by tuning the discrimination level
applied to the analogue signals produced by the photomultipli-
ers. In turn any casual photomultiplier after pulse is removed
by requiring the digital signals to be compatible with at least
two photoelectrons [22].

2.2. Profile likelihood

To extend the likelihood to many time bins, one has to con-
sider the time spread of the muon signaldµ(t)/dt. The number
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of expected muons (µ) is the integral of this signal over the
event duration,µ =

∫

dµ(t)
dt dt. Correspondingly, within a time

bin, the number of muons (µi) is the integral restricted to the
window limits. The sum of theµi ’s is µ.

The AMIGA segmented detector counts particles in windows
of 25 ns. For each of these time bins, the number of stripson
(ki) is computed. Considering that theki ’s of different time win-
dows are independent from each other, the likelihood ofµi parti-
cles in thei-th bin is given by Eq. (2). The likelihood of all time
bins

(

L(µ)
)

is the product of the single-window likelihoods,

L(µ) =
∏

i=1

Li(µi), (4)

wherei runs over the time bins andµ = (µ1, µ2, . . . ).
In the LDF fit, the parameter of interest is the total number

of muonsµ. However the value ofµ alone is not enough to
calculate the likelihood because this function also depends on
each of theµi ’s. An obstacle arises at this point, the lack of
knowledge of the signal time distributiondµ(t)/dt prevents us
from deriving theµi ’s from µ. We overcame this issue by us-
ing a profile likelihood (LP(µ)). Following this approximated
method we searched, for eachµ, the likelihood maximum un-
der the restriction

∑

µi = µ,

LP(µ) = max
∑

µi=µ
L(µ). (5)

In this treatment of the likelihood, theµi ’s are nuisance pa-
rameters which are fixed by applying the profiling technique.
We performed the likelihood maximisation with the Minuit
library [23] implemented in the ROOT data analysis frame-
work [24]. For some desirable mathematical properties men-
tioned below, we used theprofile likelihood ratiodefined as,

λ(µ) =
LP(µ)
Lmax

. (6)

whereLmax is the global maximum of the likelihood calculated
without any restriction onµ. The likelihood reaches this maxi-
mum whenµ̂ = (µ̂1, µ̂2, . . . ), all given by Eq. (3). From Eq. (6)
one can see thatλ varies between 0 and 1, the maximum value
attained at,

µ̂ =
∑

µ̂i . (7)

A λ close to unity means a likely value ofµ given the observed
data, i.e. aµ close toµ̂. On the other hand, a lowλ implies an
unlikely µ.

Providing certain conditions are met, the distribution of
f (µ) = −2 lnλ(µ) approaches aχ2 distribution, independently
from the nuisance parameter values [25]. For a segmented parti-
cle counter, these requirements translate to having many muons.
However the number of particles must not be so high as to sat-
urate the detector. An upper limit to the number of muons is
approximately three times the number of detector strips. This
bound corresponds to the probability of a segmentonto be 0.95.
In most formal terms, this condition is equivalent to askingthat
the binomial distribution of the window with more muons can
be approximated by a Gaussian. Considering the values taken
byλ, f (µ) is always positive and drops to zero at ˆµ. If the quoted

asymptotic conditions are met,f (µ) is approximately quadratic
in a wide region around ˆµ. Correspondingly, in the LDF fit, the
detectorf (µ) is equivalent to aχ2 with aσ given by the width of
the likelihood. The procedure to obtain the profile likelihood is
illustrated in Fig. 1 with a signal spread over two time windows.
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Figure 1: Contour levels of the function−2 lnL(µ)/Lmax for a signal spread
over two time bins. The parametersµ1 andµ2 are the numbers of muons in
each bin. In this example the detector is divided inton = 192 segments, the
first time bin hask1 = 96 barson, and the second onek2 = 48. The red
cross indicates the global maximum̂µ of the likelihoodL(µ) and the dotted red
line the corresponding local maxima at constantµ = µ1 + µ2. Two contour
levels defining theσ standard-deviation regions ofµ [19] are displayed. The
continuous blue line corresponds to a cut at a sampleµ = µ1 + µ2 = 165.
Inset: Function−2 ln L(µ)/Lmax along the cutµ = 165. The local minimum is
reached atµ∗1 = 116.

2.3. Integrated likelihood

Besides the profile likelihood, another useful technique toget
rid of nuisance parameters is the integrated likelihood. While
in the profile technique the nuisance parameters that maximise
the likelihood are searched for, in this second method the likeli-
hood is integrated over these parameters. To introduce the inte-
grated likelihood, let us first rewrite the nuisance parameters as
pi = µi/µ. Consequently the condition

∑

µi = µ is now given
by

∑

pi = 1. Considering this restriction and the single bin
likelihood of Eq. (2), the integrated likelihood can be written
as,

LI (µ) ∝
∫ 1

0
dp1 · · ·

∫ 1

0
dpN

N
∏

i=1

exp(−µ pi)

×
(

exp(µ pi/n) − 1
)ki δ















N
∑

i=1

pi − 1















,

(8)

whereN is the number of time bins andδ(x) is the Dirac delta
function.

In most cases, the integral in Eq. (8) has to be calculated nu-
merically, however for the case of two time intervals an analytic
expression can be obtained (see Sec. 3.2). The integrated like-
lihood requires the calculation of multidimensional integrals
which we computed using the VEGAS algorithm [26] imple-
mented in ROOT. The computation of many time bins takes a
long time; so we reduced the number of involved integrals by
calculating all the intervals having the sameki with a single

3



integral. Applying this optimisation (see Appendix A for de-
tails), we arrived to the following approximated expression of
the integrated likelihood,

LI (µ) ∝
∫ 1/m1

0
dp1 · · ·

∫ 1/mÑ

0
dpÑ

Ñ
∏

i=1

exp(−µ pi mi)

×
(

exp(µ pi/n) − 1
)ki mi pmi−1

i δ

















Ñ
∑

i=1

pi mi − 1

















,

(9)

wheremi is the multiplicity of theki value andÑ is the number
of ki values that are different among them.

3. Likelihood examples

3.1. The few muons limit

So far we presented the complete likelihood of a segmented
detector and two different approximations applied to get rid of
nuisance parameters. It is a desirable mathematical property
that, in some limiting case, the approximations and the full
method converge to the same function. This condition is met
by the three introduced likelihoods if the number of muons is
small compared to the number of detector segments; in this case
all of them tend to a Poisson distribution. Below we calculate
this limit for each method.

The demonstration for the full likelihood starts with the
single-window likelihood of Eq. (2). Ifµi ≪ n, the binomial
distribution ofki can be approximated by a Poisson distribution
with parameterµi . Then the distribution of the variablek =

∑

ki

follows a Poissonian with parameterµ =
∑

µi . The correspond-
ing likelihood is,

L(µ) = e−µ
µk

k!
. (10)

The function of Eq. (10) does not depend on the individual
nuisance parametersµi but on their sum, i.e. the likelihood is
profiled. For the integrated likelihood, the independence of the
distribution on the nuisance parameterspi allows the extraction
of the integrand in Eq. (8) to arrive to,

LI (µ) � exp(−µ) µk
∫ 1

0
dp1 · · ·

∫ 1

0
dpN

N
∏

i=1

( pi

n

)ki

× δ















N
∑

i=1

pi − 1















,

∝ exp(−µ) µk, (11)

which corresponds to a Poisson likelihood. One has to consider
that the Poisson approximation is only valid in the limited range
of small µ. In the fit, the approximation must hold for likely
values ofµ, i.e. the region around the likelihood maximum ˆµ.
In terms of the data, this condition is equivalent to asking that,
via Eq. (3),ki ∼ µi ≪ n. Therefore, if the number of segments
on is small compared to the detector segmentation, the exact,
the profile, and the integrated likelihoods are well approximated
by the same Poisson function.

3.2. Example for two time bins

The evaluation off (µ) = −2 lnλ(µ) requires a numerical
minimisation to calculate the profile likelihood. However,in
the special case of only two time windows,f (µ) has the ana-
lytic expression,

f (µ) = 2µ − 2
∑

i=1,2

δ̄[ki]
(

ki ln(ki/n)

+ (n− ki) ln(1− ki/n) − ki ln
(

eµ
∗
i /n − 1

)

)

,

(12)

whereµ∗1 andµ∗2 are the number of muons in each time window.
These values correspond to the local maximum of the likelihood
at constantµ1 + µ2 = µ. The functionδ̄[ki], used to include the
case ofki = 0, is zero atki = 0 and one otherwise. The value of
µ∗1 is,

µ∗1(µ) =























−n ln

(

− k1−k2
2k2
+

√

(

k1−k2
2k2

)2
+

k1
k2

e−µ/n
)

if k1 > 0

0 if k1 = 0.
(13)

Correspondinglyµ∗2 is µ − µ∗1. The functionf (µ) depends onµ
explicitly as per Eq. (12) and also indirectly through theµ∗i ’s.
If k1 = k2, it can be seen from Eq. (13) thatµ∗1 = µ

∗
2 = µ/2.

We exploited this degeneracy, also present in the general case
of more than two time bins, to reduce the number of nuisance
parameters. By using fewer free parameters, we optimised the
numerical minimisation run to evaluate the profile likelihood.

Also for the integrated likelihood technique it is possibleto
find an analytic expression of the likelihood as a function ofµ
which is given by,

LI (µ) =exp(−µ)
k1
∑

i=1

k2
∑

j=1

(

k1

i

) (

k2

j

)

(−1)k1+k2−i− j

× ξ(µ, i, j, n),

(14)

where,

ξ(µ, i, j, n) =



























exp(µ j/n) i = j

n
exp(µ i/n) − exp(µ j/n)

µ (i − j)
i , j

. (15)

We show next a comparison of the likelihoods correspond-
ing to the two-window example of section 2.2. The dotted
red line in Fig. 1 shows the local maxima of the likelihood
L(µ) at different values ofµ. The likelihood is evaluated along
this curve to calculatef (µ) = −2 lnλ(µ) via the profile like-
lihood. The f (µ) corresponding to the single-window, profile,
and integrated likelihoods are shown in the top panel of Fig.2.
The maximum likelihood estimator of the number of muons is
µ̂ = µ̂1 + µ̂2 = 188.3 for both the profile and the integrated
likelihoods. The number of stripsonrequired in single-window
likelihood to produce the same ˆµ as the other two binned meth-
ods, derived from Eq. (3), isk = k1 + k2 − k1k2/n. For the par-
ticular example ofk1 = 96 andk2 = 48, the equivalent number
of barson in the single-window likelihood isk = 120. Figure 2
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displays the 1σ and 2σ confidence intervals defined by the con-
ditions f (µ) = 1 andf (µ) = 4 respectively. Thef (µ) of the pro-
file and integrated likelihoods are very similar and have smaller
confidence intervals than the exact likelihood. The resolution
is enhanced with the two approximated methods because they
consider the detector timing.

The single-window likelihood saturates earlier than the pro-
file one. While in the first case the variablek of Eq. (2) corre-
sponds to the bars that have a signal over the whole event dura-
tion, theki ’s of the profile likelihood refer to a single time bin.
Since this second method spreads the signal over many time
bins, k is greater thanki . Therefore the saturation condition,
i.e. all barson, is reached in the single-window likelihood with
fewer muons than in the profile method. Because the integrated
and the profile likelihoods rely on the same signal binning, both
techniques saturate identically.

The likelihoods corresponding to an event with two time
bins, of which the first one is saturated, are displayed in the
bottom panel of Fig. 2. In this example the profile likelihood
imposes a more stringent limit than the single-window method
to the number of muons. Although the integrated likelihood
f (µ) has a minimum, in practice it only works as a lower bound
by imposing a large penalty to smallµ’s.

µ
150 200 250

)
µ(

λ
-2

 l
n

0

2

4

σ = 2

σ = 1

Single

Profile

Integrated

n = 192

= 961k

= 482k

Unsaturated

µ
1000 1500

)
µ(

λ
-2

 l
n

0

2

4

Single

Profile

Integrated

n = 192

= 1921k

= 962k
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Figure 2: Single-window, profile and integrated likelihoods for a detector di-
vided into 192 segments. The parameterµ is the number of muons in the de-
tector. Top: Counter withk1 = 96 andk2 = 48 segmentson in the first and
second time bins respectively (same example of Fig. 1). For the single-window
likelihood we assumedk = 120 segmentson. Bottom: Saturated detector with
192 and 96 barson in the first and second time bins, respectively.

4. Simulations

We tested the performance of the different likelihoods with
air showers simulated with CORSIKA v7.3700 [27] using the
high energy hadronic model EPOS-LHC [28]. We simulated
proton and iron primaries in the energy interval log10(E/eV) ∈
[17.5, 19] in steps of∆ log10(E/eV) = 0.25 for the zenith an-
glesθ = 0◦, 30◦, and 45◦. In the simulations, we applied an
algorithm with an optimal statistical thinning of 10−6 that re-
duced the number of tracked particles. We produced twenty
proton and fifteen iron showers for each energy and zenith an-
gle combination. For each simulation we recorded the number
of muons crossing a 30 m2 area placed 2.5 m underground as
in the AMIGA detectors. We considered the shielding of the
soil by selecting muons with energy greater than 1 GeV/ cosθ,
with θ the zenith angle of the muon. We computed the average
number of muons as function of the distance to the shower axis,
measured at shower plane, over each set of simulated show-
ers and fitted these values with a Kascade-Grande–like muon
LDF [14]. We also produced histograms of the muon arrival
times at different core distances. Figure 3 shows the average
LDF and Fig. 4 the arrival time histograms at 3 different dis-
tances for 1 EeV iron showers arriving atθ = 30◦. The arrival
time histograms show the fraction of particles arriving in 25 ns
time bins with respect to the total number of muons. We only
considered muons above 1 GeV/ cosθ, the threshold energy re-
quired to break through the soil shielding. The histograms show
that muons arrive more spread in time farther away from the
shower core.

Distance [m]
500 1000 1500

N
um

be
r 

of
 m

uo
ns

1

10

210

310

Average
Single shower
Fit

Figure 3: Average muon lateral distribution function fittedto the simulated
detector data (continuous blue line). The fitted data correspond to the average
number of muons in the AMIGA detectors calculated with simulations of iron
primaries with energyE = 1 EeV and zenith angleθ = 30◦. An example
of the AMIGA response to a single shower of the same type is also shown
for comparison, together with the corresponding fit of a Kascade-Grande–like
muon LDF (dotted red line).

For a given energy and zenith angle we sampled each average
shower many times varying the azimuth angle and the impact
position on the ground. We adjusted the simulated showers with
the single-window, profile and integrated likelihoods. Thein-
tegrated likelihood evaluation, involving multidimensional inte-
grals, requires a much larger computational time than the profile
likelihood. Therefore we used different numbers of events with
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each method; we sampled each shower 1 000 times for the in-
tegrated likelihood and 10 000 times for the other two methods.
Since the processing budget also increases with primary energy,
for the integrated likelihood we only reconstructed showers up
to log10(E/eV) = 18.5.

For each sampled event we calculated the distance of the
counters to the shower axis. Then we evaluated the average
LDF at each distance to find the number of muons expected in
each counter (µ). Usingµ as a parameter, we sampled the actual
number of muons from a Poisson distribution. We considered a
detector asuntriggeredif it received two or fewer muons. We
obtained the arrival time of each muon by sampling the time
distribution histograms and calculated the number of muonsin
each 25 ns time bin accordingly. In a second step we randomly
distributed the muons across the detector and calculated how
many segments wereon. The number of stripsonper time win-
dow is the input data to build the likelihood of each detector.
We computed the maximum of this likelihood to obtain an esti-
mator of the muons, ˆµ, in each detector using Eq. (7). Figure 3
shows, for a single shower, the ˆµ of each triggered detector. The
untriggered counters are represented in this plot with a down ar-
row. For each simulated event we adjustedµ as function of the
core distance with a second Kascade-Grande–like muon LDF.
The energy reconstruction of the events is based on the evalu-
ation of the fitted LDF at an optimal distance (r0) at which the
spread of the LDF is minimal [13]. For reasons that will be
explained later, it is convenient to make of the LDF value atr0

a parameter of this function (µ0). To isolate this parameter we
factorised the LDF

(

µ(r)
)

into a normalisation factorµ0 and a
second functiong(r),

µ(r) = µ0
g(r)
g(r0)

. (16)

The functiong(r), containing the distance dependence, is,

g(r) =

(

r
r1

)−α(

1+
r
r1

)−β












1+

(

r
10r1

)2












−γ

, (17)

wherer is the distance to the shower axis in the shower front,
α = 0.75, r1 = 320 m, andγ = 2.95. We adjustedµ0 and the

slopeβ by minimising the function,

−2 ln L f it (µ0, β) = −2
∑

i

ln λi(µ(r i , µ0, β)), (18)

where the sum runs over the detectors. For thei-th counter,
λi is the function introduced in section 2.2, andr i is the core
distance. The input data of the fit are, through theλi functions,
the number of stripson per time window in each counter. For
untriggered counters we used a Poisson likelihood, settingan
upper limit to the number of muons allowed in the LDF fit as in
Ref. [16]. Figure 3 shows the fit of the detector data simulated
for a single shower using the profile likelihood.

5. Reconstruction performance

In this section we evaluate the performance of the recon-
structions using the single-window, profile, and integrated like-
lihoods. For this assessment we compared the bias and the fluc-
tuations of theµ0 inferred with each method. In addition to the
properties of this point estimator, we also look at the size of
the µ0 confidence intervals derived from the LDF reconstruc-
tions. For brevity we only show the results of iron primaries
at θ = 30◦; the proton showers and the other simulated zenith
angles have similar outcomes.

5.1. Saturation

The fraction of saturated events increases with the primary
energy as the signal deposited in the detectors raises. Given
that signals are spread in many time bins, detectors saturate
less with the profile and the integrated likelihoods than with the
single-window method. Figure 5 displays the fraction of satu-
rated events with respect to the total number of simulated events
as function of energy for the profile and single-window recon-
structions. The integrated likelihood, using the same timewin-
dow size, has the same saturation as the profile method. Since
40% of the events saturate at log10(E/eV) = 18.75, we cut the
analysis of the single-window likelihood at this energy.

t [ns]
0 100 200 300 400

µ
 / iµ

0

0.1

0.2

0.3

0.4
200 m

450 m

700 m

Figure 4: Average time histograms at three different distances to the shower
axis measured at the shower plane. The bin size of 25 ns corresponds to the
detector time resolution. The histograms show the fractionof muons in each
time bin.
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For the comparisons we only selected events which have all
detectors free of saturation. We excluded saturated eventsbe-
cause their shower size parameters are reconstructed with asig-
nificant bias [17]. Given the steepness of the lateral distribu-
tion of shower particles, saturation happens mainly in detectors
close to the core. In these detectors the muon signal may also
be contaminated by electromagnetic particles and hadrons.Pre-
liminary simulations of AMIGA show that this contamination
is below 1% at 100 m from the shower core (J. M. Figueira, per-
sonal communication, 21 April 2016). This distance is less than
the average distance of the nearest detector to the shower core,
which is 230 m according to Ref. [16]. More detailed simula-
tions are currently under way to study the punch trough of elec-
tromagnetic particles. These simulations will confirm whether
the punch trough can be neglected or not. If the contamination
effect has to be considered, the current likelihood model will
have to be updated accordingly.
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Figure 5: Fraction of saturated events for iron primaries atθ = 30◦. The inte-
grated likelihood has the same saturation as the profile method. The detector
saturates more with the single-window likelihood than withthe other two meth-
ods.

5.2. Optimal distance

The statistical fluctuations of the detector data are causedby
the combined contributions of the finite number of muons and
the detector segmentation. These variations propagate during
the fit to the estimated LDF parameters, introducing fluctua-
tions in the reconstructed LDF. We evaluated the standard de-
viation of the fitted LDF as function of the core distance (σ(r))
using

σ(r)2
=

∑N
i=1(µi(r) − µ̄(r))2

N − 1
, (19)

whereN is the number of simulations,µi corresponds to thei-
th reconstructed LDF, and ¯µ to theµi ’s average. We calculated
the relative standard deviation of the LDF (ε(r)) dividing σ(r)
by µ̄. The functionε(r) represents the accuracy with which the
array reconstructs the muon number at different distances. We
derived first anε(r) for each simulated primary type, shower
energy, and zenith angle, respectively. Afterwards we added
these functions in quadrature to obtain a global resolutionεg(r).
Figure 6 shows theεg(r) corresponding to reconstructions with
the profile likelihood. The functionεg(r) reaches a minimum

close tor0 = 450 m. This is, therefore, the optimal distance to
measure the number of muons with AMIGA. The value of the
reconstructed LDF atr0 is taken as the shower size estimator
(µ̂(450)).

The optimal distance of a segmented detector array like
AMIGA depends on the primary type, energy, and zenith angle.
However theε(r) value at the optimal distance of each specific
shower type and the corresponding value atr0 = 450 m differed
in less than 0.5% in all simulations. Therefore the convenience
of adopting a single optimal distance for all events outweighs
any resolution loss introduced by not using a different optimal
distance for each shower type. In addition, the optimal dis-
tances of the single-window and integrated likelihoods arealso
close tor0 = 450 m. So, to ease the comparison between the
different methods, we adopted the samer0 for all of them.

Distance (m)
200 400 600 800

(r
) 

[%
]

gε

0

5

10

15

450 m

Figure 6: Relative standard deviation of the lateral distribution function recon-
structed using the profile likelihood. The curve corresponds to a global average
calculated using all simulated showers. A minimum is reached close to 450 m.

Given the fluctuations in the detector signals, the fitted
µ̂(450) varies across reconstructions of the same shower. Fig-
ure 7 shows histograms of the ˆµ(450) reconstructed with the
profile, integrated, and single-window likelihoods for 1 EeV
iron showers arriving atθ = 30◦. The three histograms coin-
cide within statistical uncertainties. Since ten times less recon-
structions were run for the integrated likelihood, its datahave
larger error bars than the other two methods. The plot also dis-
plays a Gaussian distribution parametrised with the mean and
the standard deviation of the profile likelihood histogram.The
distributions ofµ̂(450) are well described by the Gaussian. In
this example the ˆµ(450) distributions are unbiased, i.e. the his-
togram means match theµ(450) of the input LDF. For the three
considered likelihoods the relative standard deviation ofµ̂(450)
is closeε(450)= 6%. In the shown example, the ˆµ(450) distri-
butions of the three likelihoods are similar because the shower
µ(450) is much smaller than the 192 segments of the AMIGA
detector.

5.3. Bias

The comparison of the inputµ(450) and the correspond-
ing value fitted afterwards to the simulated data is a valuable
method to assess the reconstruction performance. We estimated
the bias as the difference between the average ¯µ(450) calculated
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over the reconstructions and the inputµ(450). As the recon-
structed ˆµ(450) changes according to the likelihood applied in
the LDF fit, theµ̂(450) bias can also vary among the different
methods. Figure 8 shows their relative biases, calculated as the
bias overµ(450), versus energy. The case of an ideal detector,
that counts particles without any pile-up effect, is also included
in the comparison. The likelihood used for this detector is the
Poissonian,

L(µ) = e−µ
µk

k!
. (20)

wherek is the number of counted particles. All observed bi-
ases are of the order of 1% or less, the four methods can be
considered as unbiased.
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Figure 8: Relative bias of number of muons at 450 m from the shower core.
Reconstructions with the profile, integrated, and single-window likelihoods to-
gether with the case of an ideal particle counter are shown. All observed biases
are of the order of 1% or less.

5.4. Standard deviation

The second quantity used to evaluate the reconstruction per-
formance is the standard deviation of the ˆµ(450) reconstructed
in the LDF fit (σ(450)). Theσ(450) measures the fluctuations
of the µ̂(450) fitted for a single event around the mean calcu-
lated over all events. Since the combination of a small bias and

a low standard deviation allows for a good estimation ofµ(450)
using the data from a single event, a smallσ(450) is a desirable
property of the reconstructed ˆµ(450).

For the four evaluated likelihoods, we estimated theσ(450)
relative toµ(450) (i.eε(450)). Figure 9 shows the correspond-
ing ε(450) as function of energy for iron showers atθ = 30◦.
The ε(450) improves with energy because showers contain
more muons; with more particles more detectors are triggered
and counters have higher signals. Theε(450) calculated with
the four methods is similar up to 1 EeV. At higher energies the
profile reconstruction has a better resolution than the single-
window one. With the single-window likelihood the resolution
flattens as muons start to pile up in the counters. The effect
is more noticeable at high energy, when there are more muons
and therefore they accumulate more. On the other hand, by us-
ing the profile and integrated likelihoods muons distributeover
many time windows, so there are fewer muons per time bin
than in the single-window case. Theε(450) of the integrated
and profile likelihoods are close up to log10(E/eV) = 18.5,
the highest simulated energy for the integrated likelihood. The
ideal counter sets a lower bound to theε(450) achievable with
an AMIGA like array of 30 m2 detectors. In the considered en-
ergy range, theε(450) of the profile likelihood is almost similar
to this best case scenario.

5.5. Coverage

The bias and standard deviation are properties of point esti-
mators like, in this case, ˆµ(450). On the other hand, coverage
is the main measure of the confidence interval quality. For each
event the 1σ errors of the LDF normalisation ˆµ(450) and the
slope parameterβ are calculated during the reconstruction by
setting−2 ln L f it in Eq. (18) equal to one. We parametrised the
LDF with µ̂(450) in Eq. (16) to obtain its confidence interval
directly from the fit procedure. The coverage of a confidence
interval is defined as the probability it contains the true value
of the estimated parameter. For example, the coverage of the
1σ interval of a Gaussian distribution is 0.68. In the more gen-
eral case of a distribution approximately Gaussian the cover-
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RMS     3.111
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Figure 7: Distribution of the reconstructed number of muonsat 450 m from the
shower axis using the profile, integrated, and single-window likelihoods. The
data of this and the following plots correspond to simulations of 1 EeV iron
showers atθ = 30◦. The histogram mean matches the simulatedµ(450).
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age is expected to be close to this value. If the data errors are
underestimated, or conversely the likelihood is too narrow, the
coverage of the confidence intervals derived from the fit can be
significantly lower than the Gaussian value. This property is
equivalent to the highχ2 produced in a fit when data errors are
underestimated. In this sense, coverage is another way of mea-
suring the goodness of a fit. But while theχ2 usually refers to a
single fit, coverage quantifies quality over many events.

We estimated the coverage of theµ(450) confidence intervals
as the fraction of reconstructed events that included, within the
mentioned intervals, the input value used in the LDF simula-
tions. Figure 10 shows the coverage of the reconstructions of
an iron primary atθ = 30◦ at different energies. This plot also
shows the coverage of the 1σ interval corresponding to a Gaus-
sian distribution. The coverage of all reconstructions areclose
to each other and to the Gaussian reference.
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Figure 10: Coverage of the 1σ confidence interval ofµ(450). The dotted line
shows the coverage of a Gaussian distribution. The coverageof the four recon-
struction methods are approximately similar to each other and to the Gaussian
value.

6. Conclusions

We introduced two different methods to reconstruct the lat-
eral distribution function of air shower muons: the profile and

the integrated likelihoods. Both likelihoods extend a previous
approach by considering the detector timing. Although we ap-
plied the likelihoods to a specific cosmic ray detector, theycan
be used for any kind of segmented particle counters with time
resolution. We found an optimal distance of 450 m to measure
the shower size parameter in a triangular array with 750 m be-
tween detectors. The new likelihoods improve the reconstruc-
tion in two aspects. Firstly, by raising the number of muons a
detector can handle before saturating, more events can be re-
constructed. The recovery is more significant close to 10 EeV,
the upper limit of the considered energy range, a region where
events are usually scarce. Secondly, we reduced the statisti-
cal fluctuations of the parameter that measures the shower size
from 1 EeV upwards. This decrease allows for a more power-
ful discrimination between different primary masses based on
the number of muons. By comparing to an ideal muon counter,
we established that the resolutions achieved with the new like-
lihoods are close to the lower bound given the detector size and
spacing. We also showed that the approximations introduced
for the profile and integrated likelihoods do not bias the re-
constructed shower size parameter and kept the coverage of its
1σ confidence interval close to the expected Gaussian nominal
value.

The shower size parameters reconstructed with the integrated
and the profile likelihoods are very similar. Nevertheless the
profile likelihood is the preferred reconstruction method given
the much shorter time it takes to process the data. The cor-
respondence between the profile and the integrated likelihood
results, shows the robustness of these techniques to reconstruct
the muon lateral distribution with an array of segmented coun-
ters.

Appendix A. Integrated likelihood multiplicity

In order to prove Eq. (9) let us write Eq. (8) in the following
way,

LI (µ) =
∫ 1

0
dp1 · · ·

∫ 1

0
dpN

N
∏

i=1

f (pi , ki) δ















N
∑

i=1

pi − 1















, (A.1)
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Figure 9: Relative standard deviation of the muon density at450 m from the
shower core. The uncertainties of the four shown methods aresimilar up
to log10(E/eV) = 18; at higher energies the reconstruction with the single-
window likelihood has less resolution than the other three cases.
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where f (pi , ki) = exp(−µ pi)
(

exp(µ pi/n) − 1
)ki . Then, if there

arem time intervals that have the samek, it is possible to choose
the first m values ofi such thatk1 = · · · = km = k. Let us
consider the integral,

∫ 1

0
dx δ















x−
m

∑

i=1

pi















= Θ















1−
m

∑

i=1

pi















= 1, (A.2)

whereΘ(x) = 1 if x ≥ 0 andΘ(x) = 0 if x < 0. Here it is
used that

∑m
i=1 pi ≤ 1. If the change of variablex = m ξ is

considered, Eq. (A.2) is written as,

m
∫ 1/m

0
dξ δ















mξ −
m

∑

i=1

pi















= 1. (A.3)

Therefore, inserting Eq. (A.3) in Eq. (A.1) and integratingover
pm the following expression is obtained,

LI (µ) =
∫ 1

0
dpm+1 · · ·

∫ 1

0
dpN

∫ 1/m

0
dξ

N
∏

i=m+1

f (pi , ki)

δ















m ξ +
N

∑

i=m+1

pi − 1















g(ξ, k,m),

(A.4)

where

g(ξ, k,m) =m
∫ 1

0
dp1 · · ·

∫ 1

0
dpm−1

m−1
∏

i=1

f (pi , k)

f

















m ξ −
m−1
∑

i=1

pi , k

















Θ

















m ξ −
m−1
∑

i=1

pi

















,

(A.5)

The integral in Eq. (A.5) cannot be analytically solved, then an
approximated expression is obtained. For that purpose, letus
consider the function,

h(p1, ..., pm−1) = ln

















m−1
∏

i=1

f (pi , k) f

















mξ −
m−1
∑

i=1

pi , k

































,

=

m−1
∑

i=1

ln f (pi , k) + ln f

















m ξ −
m−1
∑

i=1

pi , k

















.

It is easy to see that,

∂h
∂p j

(p1 = ξ, ..., pm−1 = ξ) = 0, (A.6)

which means that the vector~p = (ξ, ..., ξ) is an extreme ofh.
Note that this property does not depend on the specific form of
f . The elements of the Hessian matrix evaluated in this vector
are given by,

∂2h
∂pi∂p j

(p1 = ξ, ..., pm−1 = ξ) = −
exp(µ ξ/n)

(exp(µ ξ/n) − 1)2

×
kµ2

n2
(1+ δi j ),

(A.7)

whereδi j is the Kronecker delta (δii = 1 andδi j = 0 for i , j).
Note that the diagonal elements of the Hessian matrix are nega-
tive, which means that~p = (ξ, ..., ξ) is a maximum. Considering

just the zero order of the Taylor expansion ofh at ~p = (ξ, ..., ξ)
the following expression forg is obtained,

g(ξ, k,m) � m f(ξ, k)m
∫ 1

0
dp1 · · ·

∫ 1

0
dpm−1

Θ

















mξ −
m−1
∑

i=1

pi

















�
mm

(m− 1)!
ξm−1 f (ξ, k)m. (A.8)

Then, inserting Eq. (A.8) in Eq. (A.4) we obtain,

LI (µ) �
mm

(m− 1)!

∫ 1

0
dpm+1 · · ·

∫ 1

0
dpN

∫ 1/m

0
dξ

N
∏

i=m+1

f (pi , ki)

f (ξ, k)m ξm−1 δ















m ξ +
N

∑

i=m+1

pi − 1















.

(A.9)
Therefore, Eq. (9) is straightforwardly obtained from Eq. (A.9).
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