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We study the role of the Hall current and electron inertia in collisionless magnetic reconnection

within the framework of full two-fluid MHD. At spatial scales smaller than the electron inertial

length, a topological change of magnetic field lines exclusively due to the electron inertia becomes

possible. Assuming stationary conditions, we derive a theoretical scaling for the reconnection rate,

which is simply proportional to the Hall parameter. Using a pseudo-spectral code with no dissipa-

tive effects, our numerical results confirm this theoretical scaling. In particular, for a sequence of

different Hall parameter values, our numerical results show that the width of the current sheet is in-

dependent of the Hall parameter, while its thickness is of the order of the electron inertial range,

thus confirming that the stationary reconnection rate is proportional to the Hall parameter. VC 2016
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942418]

I. INTRODUCTION

Magnetic reconnection is a physical process which

converts magnetic free energy into kinetic energy and heat.

This important mechanism of energy conversion is present

in several space environments such as solar flares and plan-

etary magnetospheres (Vasyliunas, 1975; Dungey, 1993;

Tsuneta, 1996; and Dungey, 2000). The first model of mag-

netic reconnection was developed within the framework of

one-fluid resistive magnetohydrodynamics (MHD), the so-

called Sweet-Parker model (Parker, 1957 and Sweet, 1958).

In the Sweet-Parker regime, the electrical resistivity of the

plasma breaks the frozen-in condition at sufficiently small

scales, thus allowing magnetic reconnection to occur. In

particular, Parker (1957) showed that the reconnection rate

(i.e., the rate of change of magnetic flux due to reconnec-

tion) scales as the square root of the plasma resistivity,

which leads to exceedingly low reconnection rates for most

space physics environments (e.g., Yamada, 2011). Years

later, Petschek (1964) reported a possible way out to the

slow-rate problem giving rise to the concept of fast mag-

netic reconnection, i.e., reconnection rates virtually inde-

pendent of magnetic resistivity. In contrast to the Sweet-

Parker scaling, the Petschek solution only showed a mild

(logarithmic) dependence on magnetic resistivity, therefore

being considered as fast reconnection. However, numerical

results showed that the classical Petschek configuration

cannot be attained in simulations with a spatially homoge-

neous resistivity (e.g., Biskamp, 1986).

More recently, the break up of Sweet-Parker current

sheets driven by the so-called plasmoid instability has been

invoked as a plausible mechanism for fast magnetic recon-

nection as a result of the reduction of the effective length of

the sheet (Loureiro et al., 2007). This resistive instability

has been studied within different theoretical frameworks

such as resistive MHD/Hall-MHD (Shepherd and Cassak,

2010 and Huang et al., 2011) and fully kinetic theory with a

Fokker-Planck collision operator (Daughton et al., 2009).

In the scenarios discussed so far, the electrical resistivity

plays a key role in the reconnection process. When the col-

lisional length scale becomes much larger than plasma

scales such as the ion inertial scale (or even the electron in-

ertial scale), a new physical scenario sets in, known as col-

lisionless reconnection.

For the collisionless magnetic reconnection, resistive

effects are negligible, and therefore the resistive MHD model

is no longer appropriate. Effects other than magnetic resistiv-

ity can break the frozen-in condition such as electron inertia

or non-gyrotropic contributions to pressure. Discussions

about the relative importance of electron inertia and non-

gyrotropic (off-diagonal) pressure tensor terms can be found

elsewhere (Cai et al., 1994; Hesse et al., 1995; Biskamp

et al., 1997; Hesse and Winske, 1998; and Shay et al., 1998;

2007). In the present paper, we focus on the role of electron

inertia. We also assume incompressibility and therefore non-

gyrotropic pressure effects are not important (Biskamp et al.,
1997). More specifically, we focus on the physical conse-

quences of including the Hall effect and electron inertia

(with isotropic pressures) into a fluidistic description.

At spatial scales larger than the ion inertial length ki � c=

xpi (where c is the speed of light, xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n=mi

p
is the

plasma proton frequency, e is the electron charge and n is the

plasma density), the MHD description is adequate to describe

global phenomena in most astrophysical plasmas. However, at

scales below ki, where the ions become unmagnetized, the

Hall-MHD (HMHD) description becomes valid. At spatial

scales of the order of the electron inertial length ke � c=xpe

(where xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n=me

p
is the plasma electron frequency)

or smaller, the terms of electron inertia become dominant, and

electrons are no longer frozen to the magnetic field lines

(Vasyliunas, 1975). At this level of description, a topological

change of the magnetic field lines exclusively due to electron
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inertia becomes possible. Andr�es et al. (2014b) presented a

study of collisionless magnetic reconnection within the frame-

work of Electron Inertia Hall-MHD (EIHMHD), i.e., a two-

fluid theoretical framework that extends HMHD and includes

the inertia of electrons. Using a pseudo-spectral code with no

dissipative effects, the authors numerically confirmed that the

change in the topology of the magnetic field lines is exclu-

sively due to the presence of electron inertia. Moreover, they

showed that the computed reconnection rates were independent

of the mass ratio me=mi and remain a fair fraction of the

Alfv�en velocity, which therefore qualifies as fast reconnection.

It is worth mentioning that the level of description of

EIHMHD should not be confused with the so called electron

MHD (EMHD) approximation. Instead, the EIHMHD model

retains the whole dynamics of both the electron and ion flows

throughout all the relevant spatial scales. It asymptotically

becomes MHD at the largest scales, HMHD at intermediate

scales, and EMHD at the smallest scales. Under the EMHD

approximation, the ions are assumed to be static (because of

their much larger mass) and the electrons are the ones to carry

the electric current (Biskamp et al., 1997).

Geospace Environment Modeling (GEM) Reconnection

Challenge (Birn et al., 2001) was a project designed to study

collisionless magnetic reconnection assuming different theo-

retical approaches such as fully electromagnetic particle in

cell (Hesse et al., 2001; Pritchett, 2001; and Shay et al.,
2001), resistive MHD, HMHD (Birn and Hesse, 2001; Otto,

2001; Ma and Bhattacharjee, 2001; and Shay et al., 2001),

and hybrid codes (Kuznetsova et al., 2001 and Shay et al.,
2001). The authors find that the reconnection rate is insensi-

tive to the mechanism that breaks the frozen-in condition,

and its particular value is approximately �0.1 (in dimension-

less form). In particular, Shay et al. (1999) claimed that this

values of the reconnection rate is a universal constant as the

system become very large.

However, several studies have demonstrated that the

reconnection rate might still depend on the value of the Hall

parameter (Morales et al., 2005a; 2005b; and Simakov and

Chac�on, 2008), the level of turbulent fluctuations (Matthaeus

and Lamkin, 1986; Lazarian and Vishniac, 1999; Smith

et al., 2004; and Servidio et al., 2009), and the boundary

conditions of the problem (Wang et al., 2000; 2001). This

idea that MHD turbulence may play an important role in a

magnetic reconnection setup was first proposed by

Matthaeus and Lamkin (1986). Smith et al. (2004) examined

the influence of the Hall effect and level of MHD turbulence

on the reconnection rate in 2.5D compressible Hall MHD.

Their results indicate that the reconnection rate is enhanced

both by increasing the Hall parameter and by the turbulence

amplitude.

Following an approach of single-particle dynamics,

Cowley (1985) found an expression for the reconnection

rate, which strongly depends on the ion inertia length. Wang

et al. (2000) reported an analytical treatment of quasi-

stationary collisionless magnetic reconnection including the

Hall effect, scalar electron pressure gradient, and electron

inertia terms. The authors find that the reconnection rate

depends on the ion inertial length, the boundary/initial condi-

tions, and the expression for the external driving force.

Using 2D incompressible Hall-MHD simulations, Fitzpatrick

(2004) investigated the scaling of the rate of externally

driven magnetic reconnection in the so-called Taylor prob-

lem (where a small-amplitude boundary perturbation is sud-

denly applied to a slab plasma equilibrium). This author

finds that the inclusion of the Hall term greatly increases the

reconnection rate. Note, however, that this reconnection pro-

cess is of the collisional type, since resistivity plays an essen-

tial role and also that me¼ 0. More recently and within the

context of incompressible HMHD, Simakov and Chac�on

(2008) presented a quantitative analysis of reconnection

valid for arbitrary values of the Hall parameter (see also

Malyshkin, 2008).

Our main goal in this paper is to study the collisionless

magnetic reconnection rate, using a full two-fluid model for

a completely ionized hydrogen plasma, retaining the Hall

current and electron inertia. Within this framework, we study

topological changes of the magnetic field lines exclusively

due to electron inertia. In particular, we calculate a scaling

for the quasi-stationary reconnection rate. Our results show

that the reconnection rate has a linear dependence on the

Hall parameter. In Section II, we briefly describe the ideal

EIHMHD set of equations. In Section III, we present our the-

oretical scaling for the reconnection rate. In Section IV A,

we show the set of equations that describes the dynamical

evolution of the problem in a 2.5D setup and the correspond-

ing initial conditions. In Section IV B, considering a pseudo-

spectral method to accurately run ideal simulations, we pres-

ent our main numerical results. Finally, in Section V, we

compare and discuss our results with those reported in the lit-

erature and summarize our main conclusions.

II. ELECTRON INERTIA HALL-MHD MODEL

The detailed derivation of the EIHMHD model have

been presented elsewhere, both for the ideal (Andr�es et al.,
2014b) and the dissipative regimes (Andr�es et al., 2014a). In

this section, we summarize the key points of the derivation

in the ideal case, which is the proper one to deal with colli-

sionless reconnection. The equations of motion for an incom-

pressible plasma made of ions and electrons with mass mi;e,

charge 6e, density ni ¼ ne ¼ n (because of quasi-neutrality),

pressure pi;e, and velocity ui;e, respectively, can be written as

min
dui

dt
¼ en Eþ 1

c
ui � B

� �
� $pi; (1)

men
due

dt
¼ �en Eþ 1

c
ue � B

� �
� $pe; (2)

J ¼ c

4p
$� B ¼ en ui � ueð Þ; (3)

where

due;i

dt
� @ue;i

@t
þ ue;i � $ð Þue;i (4)

is the total derivative. Here, B and E are the magnetic and

electric fields, J is the electric current density, and c is the

speed of light. This set of equations can be written in a
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dimensionless form in terms of a typical length scale L0, the

constant particle density n, an intensity B0 for the magnetic

field, a typical velocity vA ¼ B0=ð4pnMÞ1=2
(the Alfv�en ve-

locity, where M � mi þ me), and the electric field in units of

E0 ¼ vAB0=c

1� lð Þ dui

dt
¼ 1

k
Eþ ui � Bð Þ � $pi; (5)

l
due

dt
¼ � 1

k
Eþ ue � Bð Þ � $pe; (6)

J ¼ 1

k
ui � ueð Þ; (7)

where we have introduced the dimensionless parameters

l � me=M and k � c=xpML0 is the dimensionless Hall pa-

rameter, and xpM ¼ ð4pe2n=MÞ1=2
has the form of a plasma

frequency for a particle of mass M. The dimensionless ion

and electron inertial lengths can be defined in terms of their

corresponding plasma frequencies xpi;e ¼ ð4pe2n=mi;eÞ1=2

simply as ki;e � c=xpi;eL0. Note that in the limit of electron

inertia equal to zero, we obtain xpM ¼ xpi, and therefore

k ¼ ki ¼ c=xpiL0 reduces to the usual Hall parameter.

However, throughout this paper, we are going to retain the

effect of electron inertia through the parameter l 6¼ 0. The

expressions for the dimensionless ion and electron inertial

scales (ki;e) in terms of the two dimensionless parameters l
and k are simply ki ¼ ð1� lÞ1=2k and ke ¼ l1=2k.

For a hydrodynamic description of this two-fluid

plasma, we replace the velocity field for each species (i.e.,

ui;e) in terms of two new vector fields. Namely, the hydrody-

namic velocity u given by

u ¼ ð1� lÞui þ lue; (8)

and the electric current density J given by (7). From

Equations (7) and (8), we can readily obtain the velocity of

each species as

ui ¼ uþ lkJ; (9)

ue ¼ u� ð1� lÞkJ: (10)

The hydrodynamic equation of motion is the sum of the

corresponding equations of motion (5) and (6) for each

species

du

dt
¼ J� B� l 1� lð Þk2r2B

� �
� $p; (11)

where p � pi þ pe is the total pressure. Even though most of

the terms in Equation (11) can easily be identified as a sum

of the corresponding terms in Equations (5) and (6), the sum

of the convective derivatives in these equations are nonlinear

terms that give rise to a new nonlinear term in Equation (11)

which is proportional to l. Note also that in the limit of neg-

ligible electron inertia (i.e., for l! 0), Equation (11)

reduces to the equation of motion for the traditional one-

fluid MHD. This is the case for the Hall-MHD description as

well, which is also a two-fluid theoretical description, but

considering massless electrons (l¼ 0).

On the other hand, the equation of motion for electrons

(Equation (6)), using E ¼ �@tA�r/ and ðue � rÞue ¼ xe

�ue þrðu2
e=2Þ (with xe ¼ r� ue being the electron vor-

ticity) can be written as

@

@t
A� lkueð Þ ¼ ue � B� lkxeð Þ þ r kpe þ lk

u2
e

2
� /

� �
:

(12)

We define

B0 � B� lkxe ¼ B� lð1� lÞk2r2B� lkx; (13)

where x ¼ $� u is the hydrodynamic vorticity. Taking the

curl of Equation (12), we obtain a dynamical equation for

the magnetic field

@t B0 ¼ $� ½u� ð1� lÞkJ� � B0: (14)

Equations (11) and (14) are the EIHMHD equations. It is

interesting to note that the presence of the electron mass

introduces higher order derivative terms. This certainly has

an impact at large wavenumbers, affecting the distribution of

energy at very small scales. Note that in the limit of negligi-

ble electron inertia (i.e., for l! 0), Equations (11) and (14)

reduce to the standard equation of motion and induction

equation of HMHD (G�omez et al., 2008; 2013).

III. THEORETICAL SCALING OF THE MAGNETIC
RECONNECTION RATE

In the context of collisionless magnetic reconnection, the

reconnection region develops a multi-scale structure in which

the ion and electron inertial lengths ki;e play a role (Biskamp

et al., 1997). As we discussed in the Introduction, ions can be

considered approximately static and electrons are the ones to

carry most of the electric current. Also, at these scales, the

terms of electron inertia become dominant, and the electrons

can no longer be frozen-in to the magnetic field lines

(Vasyliunas, 1975). Therefore, at this level of description, a

change in the topology of the magnetic field lines which is

exclusively due to electron inertia, becomes possible.

Within scales near the X-point, where juij � jJ=enj, we

obtain a scaling for the reconnection rate as a function of k
and l which are the main parameters of the problem. We

consider a rectangular reconnection region with a width 2d
and a length 2D (see Figure 1). By definition, the reconnec-

tion rate in a 2D configuration is the out-of-plane component

of the electric field (i.e., Ez) at the X-point. The electric field

can be obtained from the ideal equation of motion for the

electrons (2) as

E ¼ �me

e

@ue

@t
þ ue � xe þ

e

mec
B

� �
þ $

u2
e

2
þ pe

men

� �" #
:

(15)

Under the assumption of quasi-stationarity (i.e., @t � 0) for a

2.5D setup (i.e., @z � 0), the out-of-plane component of the

electric field (the ẑ direction) reduces to
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Ez ¼ �
me

e
ẑ � ue � xe ¼

me

e3n2
ẑ � J� $� Jð Þ; (16)

where we have assumed ue � �J=en.

In view of the sketch shown in Figure 1, close to the

X-point is @x � D�1; @y � d�1 and Jz ¼ cBin=4pd, where Bin

is the magnetic field at the edge of the reconnection region in

the inflow direction. Therefore,

Ez ¼
me

e

c

4pne

� �2 BzBin

Dd2
: (17)

To estimate the out-of-plane component of the magnetic field

(Bz), we consider the ẑ component of the curl of Equation

(15) (under quasi-stationary conditions), i.e.,

ẑ � $� J� e

cme
B� 1

en
$� J

� �� �
¼ 0; (18)

which, in 2.5D setup, leads to

B? � $?Jz ¼
c

xpe

� �2

J? � $? r2Bz

	 

; (19)

and therefore,

Bz ¼
xped

c
Bin: (20)

The ẑ-component of the electric field at the X-point is

then

Ez ¼
c

4pen

B2
in

Ddxpe
: (21)

The dimensionless reconnection rate, i.e., r � cEz=B0vA,

becomes

r ¼ c

xpMD
c

xped
Bin

B0

� �2

: (22)

As it was discussed in the Introduction, we expect Bin and D
not to depend on k (Simakov and Chac�on, 2008). Their par-

ticular values are only determined by the boundary and ini-

tial conditions. Nevertheless, in Section IV B, we evaluate

the potential dependence of Bin, d, and D with the Hall pa-

rameter in our numerical results.

Assuming that the thickness of the current sheet is

essentially the electron inertial length, i.e., d � c=xpe and

also that the typical magnetic field intensity is B0 ¼ Bin and

the typical length scale is L0 ¼ D, we obtain

r ¼ k: (23)

Note that if d � c=xpe, according to (20), we also obtain that

(in the regime of quasi-stationary reconnection) Bz � Bin.

Note also that the reconnection rate is independent of the

mass ratio l, as shown in Andr�es et al. (2014b).

Note that in the collisionless regime we are neglecting

the role of the electrical resistivity. More specifically, we are

neglecting the Ohmic term J=r on the right-hand side of

Equation (15), where r ¼ e2nse=me is the electrical conduc-

tivity and se is the collisional slowing-down time of electrons

(Trubnikov, 1965). This assumption is justified provided that

the leading term in Equation (15) (see also Equations

(16)–(21)) is much larger than jJ=rj, which leads to

Xese 	
D
d

 1; (24)

where Xe ¼ eB0=mec is the electron-cyclotron frequency.

The interpretation of Equation (24) is straightforward: elec-

tron collisions are much less frequent than their cyclotron

periods.

IV. NUMERICAL RESULTS

A. 2.5D setup and initial conditions

In a 2.5D setup, the vector fields depend on two coordi-

nates, say, x and y, although they have their three compo-

nents. Considering the incompressible case, i.e., $ � u ¼ 0,

we can write the magnetic and velocity fields as

B ¼ $� ½ẑ aðx; y; tÞ� þ ẑ bðx; y; tÞ; (25)

u ¼ $� ½ẑ uðx; y; tÞ� þ ẑ uðx; y; tÞ; (26)

where aðx; y; tÞ and uðx; y; tÞ are the scalar potential for the

magnetic and velocity fields, respectively, and bðx; y; tÞ and

uðx; y; tÞ are simply the corresponding out-of-plane compo-

nents. In terms of these scalar potentials, Equations (11) and

(14) take the form

@t x ¼ ½u;x� � ½a; j� � ð1� lÞlk2½b;r2b�; (27)

@t u ¼ ½u; u� � ½a; b� � ð1� lÞlk2½j; b�; (28)

@t a0 ¼ ½u� ð1� lÞkb; a0�; (29)

@t b0 ¼ ½u� ð1� lÞkb; b0� þ ½u� ð1� lÞkj; a0�; (30)

where

x ¼ �r2u; (31)

j ¼ �r2a; (32)

a0 ¼ aþ ð1� lÞlk2j� lku; (33)

FIG. 1. Schematic 2.5D reconnection region.
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b0 ¼ b� ð1� lÞlk2r2b� lkx; (34)

and the nonlinear terms are the standard Poisson brackets,

i.e., ½p; q� ¼ @xp@yq� @yp@xq. The set of Equations (27)–

(30) describes the dynamical evolution of the magnetic and

velocity fields in 2.5D. When l¼ 0 (massless electrons), this

set of equations reduces to the incompressible 2.5D HMHD

equations (G�omez et al., 2008).

In the present paper, we performed 2.5D EIHMHD sim-

ulations using a pseudo-spectral code, which yields exponen-

tially fast numerical convergence and negligible numerical

dissipation. The accuracy of the numerical scheme can be

verified in part by looking at the behavior of the ideal invari-

ants of the EIHMHD equations in time. The simulations

reported here correspond to zero viscosity and resistivity,

and the total energy (Andr�es et al., 2014b and Kimura and

Morrison, 2014) is conserved by the numerical scheme with

an error DE=E of less than 10�8. The ion and electron helic-

ities were initially zero and throughout their evolution differ

from zero in less than 10�15. Therefore, hereafter, we assume

that our code conserves energy. The reconnection processes

that are observed to occur, must then be the exclusive result

of electron inertia.

Our initial condition to simulate a thin current sheet

is given by (assuming periodic boundary conditions in a 2p
�2p box)

B x;y; t¼ 0ð Þ ¼ B0 tanh
y� 3p

2
2pl

0
@

1
A
� tanh

y�p
2

2pl

 !
þ 1

2
4

3
5

x̂;

(35)

where, in normalized units, we have B0 ¼ 1 and l¼ 0.02. To

drive reconnection, a monochromatic perturbation dB ¼ $
� ½ẑ daðx; yÞ� with daðx; yÞ ¼ a0 cosðkxxÞ, kx¼ 1 and an am-

plitude of a0 ¼ 0:02B0 is added to the initial condition (35).

It is worth mentioning that in our simulations we do not use

any external driving force, and therefore the reconnection

process can be regarded as self-driven. We perform numeri-

cal simulations with a spatial resolution of 20482 grid points.

For all the runs, we use a value of electron to proton mass ra-

tio me=mi ¼ 0:015 and different values of the Hall parameter

k. Figure 2 shows the setup of magnetic reconnection for

k ¼ 0:1. Contour levels of magnetic flux a(x, y) are in black

lines, superimposed to the electric current density component

along the z direction, j(x, y), at time t¼ 0.6 (in grayscale).

We only show half a box of integration for each case, of size

2p� p.

B. Quasi-stationary magnetic reconnection

Within the framework of EIHMHD, we study the colli-

sionless magnetic reconnection problem varying the dimen-

sionless Hall parameter k. Using the initial conditions

described in Subsection IV A, we performed ten ideal runs

with a spatial resolution of 20482 grid points for different

values of the Hall parameter. Our runs span the range k
¼ 0:07 to k ¼ 0:16, with a step of 0.01. The values of k are

sufficiently small, to minimize the potential influence of

boundary conditions. In all these runs, the electron to ion

mass ratio corresponds to me=mi ¼ 0:015.

To measure the efficiency of the magnetic reconnection

process, the dimensionless reconnection rate r(t) is defined,

which is the rate at which magnetic flux flows into the

X-point. Using Equation (25), it is straightforward to show

that the total reconnected flux UðtÞ is UðtÞ ¼ amax � amin

(Smith et al., 2004 and Andr�es et al., 2014b). Therefore, the

reconnection rate r(t) is the variation of the magnetic flux

per unit time, i.e., rðtÞ ¼ dUðtÞ=dt. Figure 3 shows the recon-

nected flux (upper panel) and reconnection rate (lower panel)

as a function of time, for the ten values of the Hall parame-

ter. In contrast to previous claims (Shay et al., 1999 and Birn

et al., 2001), Figure 3 shows that the reconnection rate

strongly depends on k and is not a universal constant. As it

can be seen, the reconnected flux monotonically increases

with k, which ultimately leads to an increment of the maxi-

mum magnitude of reconnection rate. We also note that as

we increase k, the maximum reconnection rate occurs at the

earlier times. Similar behavior has been reported in the liter-

ature when the Hall effect is included in Ohm’s law (Smith

et al., 2004 and Morales et al., 2005b; 2006).

From Equation (22), we see the importance of studying

whether the thickness and width of the reconnection region

FIG. 2. The image (in grayscale) shows the spatial distribution of current

density j(x, y) at t¼ 1.0 for k ¼ 0:1 and me=mi ¼ 0:015. Contour levels of

a(x, y) are superimposed (black lines).

FIG. 3. Reconnected flux U (upper panel) and reconnection rate r (lower

panel) as a function of time for k ¼ 0:07;…; 0:16 (from bottom to top). For

all runs, the electron to ion mass ratio is me=mi ¼ 0:015.
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(d and D, respectively) and the magnetic field at the edge of

this region (Bin) change as a function of the Hall parameter.

Since our scaling was performed assuming quasi-stationary

conditions, we have to take this constraint into account. The

width of the reconnection region d is defined in terms of the

current density profile j(y) across the layer (Malyshkin,

2010). The value of d is obtained from a best fit of the nu-

merical profile to a sech2ðy=dÞ function, which is consistent

with the initial profile give by Equation (35). To determine

Bin, we simply adopt Bin ¼ Bxðx ¼ p=2; y ¼ p=4� dÞ, since

our neutral point is located at x ¼ p=2; y ¼ p=4. We assume

that the system evolves in a quasi-stationary fashion during a

time interval such that d and Bin show approximately no tem-

poral variations. The length of the reconnection region D
was obtained from the outflow velocity profile uxðx; y
¼ p=4Þ applying the incompressible condition for the

plasma, i.e.,

u outð Þ
x x ¼ p

2
þ D; y ¼ p

4

� �
¼ D

d
u inð Þ

y x ¼ p
2
; y ¼ p

4
� d

� �
:

(36)

Figure 4 shows the quasi-stationary values of d (gray

circles) as a function of ke. In addition, we plot ke in gray-

dashed line. As expected, the width of the reconnection

region is of the order of the electron inertial length. In partic-

ular, from a best linear-fit for log d� log ke, we obtain

d ¼ ð1:360:3Þ k1:0660:07
e . Therefore, we conclude that

d � ke.

Figure 5 shows Bin (upper panel) and D (lower panel) as

a function of k (gray squares) for the ten values of the Hall

parameter. Figure 5 indicates that Bin and D show approxi-

mately no dependence with the Hall parameter. This result is

compatible with the previous results reported in the literature

(Simakov and Chac�on, 2008 and Wang et al., 2001).

The results displayed in Figures 4 (d � ke) and 5

(Bin � const and D � const) lend support to the assump-

tions made in Equation (22) to obtain Equation (23), i.e.,

that the reconnection rate is simply proportional to the Hall

parameter. Figure 6 shows the quasi-stationary reconnec-

tion rates (gray circles), i.e., the mean reconnection rate for

the time interval determined in Section IV B, as a function

of the Hall parameter k. In addition, we plot the curves cor-

responding to the best linear-fit for log k� log r (dashed

line). The inset in Figure 6 shows r=k (gray squares) as a

function of k. From the best linear-fit for log k� log r, we

obtain r ¼ ð0:1160:07Þ k0:9860:03. Therefore, we conclude

that the reconnection rate r is compatible with a linear rela-

tion with the Hall parameter k, as it was predicted by our

analytical relation (23).

Finally, we also compare the quasi-stationary reconnec-

tion rate for a fixed value of the Hall parameter (k ¼ 0:1) and

two different electron to proton mass ratios. In particular, we

compared the results for me=mi ¼ 0:015 and me=mi ¼ 0:15.

FIG. 4. Quasi-stationary values of d (gray circles) as a function of ke. We

plot the electron inertial length ke in gray-dashed line for reference.

FIG. 5. Quasi-stationary values of Bin (upper panel) and D (lower panel) as a

function of k. The gray-dashed line indicates the mean values of Bin and D.

FIG. 6. Quasi-stationary reconnection rate r (gray circles) as a function of

the Hall parameter k. The best linear-fit for log k� log r is shown in gray-

dashed line. Inset: Ratio between quasi-stationary reconnection rates and the

Hall parameter (gray squares) as a function of the Hall parameter.
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In the quasi-stationary regime, we find approximately the

same reconnection rate. This result is compatible with our

theoretical result, which predicts that fast reconnection rate

is insensitive to the electron to proton mass ratio even though

it needs to be nonzero for reconnection to take place (Birn

et al., 2001 and Zenitani et al., 2011; see also Andr�es et al.,
2014b).

V. DISCUSSION AND CONCLUSIONS

Within the framework of two-fluid MHD and assuming

stationary conditions, we obtain a theoretical scaling for the

reconnection rate. Our numerical results confirm our

assumptions that the thickness of the current sheet is essen-

tially the electron inertial length, i.e., d � ke, and that Bin

and D do not depend on the Hall parameter (Simakov and

Chac�on, 2008). More importantly, our numerical results also

confirm the predicted linear dependence of the reconnection

rate r with the Hall parameter k (i.e., r / k).

Within the context of incompressible HMHD, Simakov

and Chac�on (2008) presented a quantitative analysis of

reconnection valid for the resistive, HMHD, and EMHD

regimes. Their study concentrated on the reconnection

region, without considering any particular external driving

force. In the resistive MHD limit, the authors recover the

standard resistive result (Parker, 1957). In the limit of

EMHD, the authors find that the reconnection rate does not

explicitly depend on the dissipation coefficients and features

a strong dependence on the Hall parameter. In particular,

they confirm an earlier result and find that r ¼
ffiffiffi
2
p

k=D
(Chac�on et al., 2007), which is consistent with our scaling.

Malyshkin (2008) also calculated the rate of quasi-

stationary, 2.5D magnetic reconnection within the frame-

work of incompressible HMHD. The author find that the

dimensionless reconnection rate is independent of the electri-

cal resistivity and equal to k=L, where L is the scale length

of the external magnetic field in the upstream region outside

the electron layer. This result is also compatible with our the-

oretical results (see also Malyshkin, 2009).

In a different direction, Wang et al. (2000) reported a

similar linear dependence with k and noted that Bin is deter-

mined by the functional form of the boundary conditions,

while D depends on an external time-dependent driving

force. For a particular model of external driving, Wang et al.
(2001) calculated the scaling of the reconnection rate within

the framework of resistive HMHD. The authors found a k1=2

dependence for the reconnection rate. This particular scaling

is not comparable with our results, since in our simulations

we do not consider any external driving force. Using resis-

tive HMHD simulations and considering electrical resistivity

as the mechanism that breaks the frozen-in condition,

Fitzpatrick (2004) reported a k3=2 dependence for the recon-

nection rate. In this case, the forcing effect is applied through

a small amplitude boundary perturbation to a tearing-stable

plasma equilibrium.

As discussed in the Introduction, MHD turbulence may

play an important role in magnetic reconnection (Matthaeus

and Lamkin, 1986). Smith et al. (2004) examined the influ-

ence of the Hall effect and level of MHD turbulence on the

reconnection rate in 2.5D compressible Hall MHD. Their

results indicate that the reconnection rate is enhanced both

by increasing the Hall parameter and by the turbulence am-

plitude. In agreement with these studies, our numerical

results show a clear enhancement as we increase the Hall pa-

rameter. Smith et al. (2004) also suggested a power-law scal-

ing of the reconnection rate as a function of the Hall

parameter as r / dBk3=2, where dB is the level of initial tur-

bulence in the system. However, in our study, we do not con-

sider any initial turbulence level, since we focus on the

consequences of adding the Hall effect and electron inertia

terms in a laminar background. Also, in their simulations,

Smith et al. (2004) added a small amount of magnetic resis-

tivity, in order to break the frozen-in condition and start the

reconnection process, which is different from our ideal

EIHMHD description.

In summary, we obtained a theoretical linear scaling for

the reconnection rate as a function of the Hall parameter,

which is confirmed by our numerical results and is also com-

patible with the previous results in the literature (Smith

et al., 2004; Chac�on et al., 2007; Simakov and Chac�on,

2008; and Malyshkin, 2009; 2010).
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