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Abstract

The twenty protein coding amino acids are found in proteomes with different relative abundances.

The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the

least abundant amino acid, cysteine. Amino acid metabolic costs differ similarly, constraining their

incorporation into proteins. On the other hand, a diverse set of protein sequences is necessary to build

functional proteomes. Here we present a simple model for a cost-diversity trade-off postulating that

natural proteomes minimize amino acid metabolic flux while maximizing sequence entropy. The model

explains the relative abundances of amino acids across a diverse set of proteomes. We found that the data

is remarkably well explained when the cost function accounts for amino acid chemical decay. More than

one hundred organisms reach comparable solutions to the trade-off by different combinations of proteome

cost and sequence diversity. Quantifying the interplay between proteome size and entropy shows that

proteomes can get optimally large and diverse.

Key words: amino acid decay, amino acid metabolism, information theory, maximum entropy, proteomics.

Introduction

The twenty proteinogenic amino acids are present

in nature in different amounts, spanning nearly

an order of magnitude (The UniProt Consortium

(2013)). The most abundant amino acid in both

Swissprot and TrEMBL databases is leucine, while

tryptophan and cysteine are the least abundant.

According to statistical studies, natural protein

sequences are indistinguishable from strings

of amino acids chosen at random with the

abovementioned abundances (Weiss et al. (2000)).

Amino acid relative abundances are fairly well

conserved across organisms, suggesting that a

single underlying principle might determine the

amino acid composition of proteomes.
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Some forty years ago Dyer (Dyer (1971); Gupta

(2005)) suggested that protein sequences could

be the result of transcription and translation

of random DNA sequences. The amino acid

distribution arises from the interplay between

the genomic GC content, codon assignment and

redundancy of the genetic code. We will refer

to this as the genetic code model and describe

it in more detail below. Despite its simplicity

the calculated amino acid relative abundances

correlate fairly well with the observed ones,

although with prominent outliers (Dyer (1971);

Gupta (2005)).

The "cost minimization principle" suggests

that organisms minimize the cost of protein

biosynthesis (Heizer et al. (2011); Seligmann

(2003)). A linear relationship between amino acid

abundance and amino acid molecular weight or

amino acid metabolic cost is supported by a

reasonably high Pearson coefficient of correlation

(Heizer et al. (2011); Seligmann (2003)). However,

the linear relationship is presented as such

rather than justified from first principles (Heizer

et al. (2011); Seligmann (2003)) and cost

minimization alone predicts that proteins would

be homopolymers of the cheapest amino acid.

On the other hand, natural protein folds can not

be encoded with homopolymers, as described by

the energy landscape theory of protein folding

(Bryngelson and Wolynes (1987)). A sufficiently

large alphabet is needed to encode the diversity

of known proteins (Wolynes (1997), Shakhnovich

(1998)). Precisely how cost minimization and

sequence diversity requirements balance each

other is not known.

Here, we explicitly treat the trade-off between

two competing forces: the minimization of the

metabolic cost of amino acid biosynthesis and the

maximization of the number of sequences that can

be generated in a proteome from a given amino

acid composition. From this basic hypothesis,

we deduce a mathematical relationship between

amino acid metabolic cost and the logarithm of

amino acid abundances. This simple relationship

describes the data remarkably better than both

the genetic code model and the linear cost-

abundance model.

Theory
A linear relationship

A naive idea suggests that the probability

that an amino acid is incorporated in proteins

might reflect the energetic cost of producing

the amino acid (with less costly amino acids

used more frequently) while maintaining the

flexibility to code as many polypeptide chains as

possible. Previous work suggested that the relative

abundance of amino acids in proteomes is linearly

related to the energetic costs of making the amino

acids (Heizer et al. (2011); Seligmann (2003)).

Here we suggest that it is more appropriate to look

for a linear relationship between the logarithms of

the relative abundances and the energetic costs.
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We derive this relationship via a maximization

principle.

Given probabilities pi, 1 i20, representing

the relative abundances of the twenty amino acids

in a proteome, the number of probable peptide

chains of length n in a proteome can be calculated

from Shannon’s information theory as e

nh, where

h=h(p1,...,p20)=�
20X

i=1

pi ln(pi)

is the entropy (Shannon (1948); Shannon and

Weaver (1949)). The average energetic cost of

amino acids in a cell is
P20

i=1piei, where ei is the

energetic cost of i-th amino acid.

The maximization of the number of probable

sequences in a proteome and the simultaneous

minimization of metabolic cost is equivalent to

maximizing the function:

f(p1,...,p20)=h(p1,...,p20)�
20X

i=1

piei. (1)

The maximum of this function has the property

that at a given energetic cost the entropy is

highest, that is the flexibility of a proteome to

produce different polypeptide chains is greatest.

Conversely, at a given entropy the energy

consumed by producing proteins is minimized.

These properties hold for any choice of units for

the energies and the entropy.

Maximizing f predicts a linear relationship with

negative slope between the logarithms of the

relative abundances and the energetic costs. We

maximize the function f by differential calculus

given a constraint, namely that the sum of

the relative abundances equals unity,
P20

i=1pi=

1. The gradient of the function should be a

constant multiple of the gradient of the constraint,

the Lagrange multiplier �. Taking the partial

derivative with respect to pi of (1) and the

constraint
P20

i=1pi=1 gives for each i:

�ln(pi)�1�ei=�, i.e. ln(pi)=�ei�(1+�).

The value of the intercept �(1+�) can be derived

from the constraint:

1=
20X

j=1

pj=
20X

j=1

e

�ej�(1+�)=e

�(1+�)
20X

j=1

e

�ej

which implies that �(1+�)=�ln(
P20

j=1e
�ej ).

This gives the linear relation:

ln(pi)=�ei� ln(
20X

j=1

e

�ej ), 1 i20, (2)

between the logarithm of the relative abundance

and the energetic cost referred to above, with slope

�1 when the energetic cost ei is given in the

“correct" natural unit e. Taking the exponential of

(2) gives the relative abundance of the ith-amino

acid pi in terms of the costs in unit e:

pi=
e

�ei

P20
j=1e

�ej
. (3)

The formula is reminiscent of the Gibbs

distribution in physics.

The slope of the linear relationship

Since the "correct” natural unit e for the energetic

costs ei, 1 i20, is not known, we can assume

that the energetic costs ci used in the examples

below are given in terms of some other unit c

satisfying c=me for some m2R>0, and are thus
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linear multiples of these theoretical ei: ci=(1/m)ei

(or ei=mci) for 1 i20. An important fact is

that –under the linear relationship derived in the

previous section– not only is the relationship linear

for this other choice of unit c (i.e. for any other

computed energetic cost), with slope �m instead

of �1, but also the relative abundances pi are

invariant under this change of scale:

ln(pi)=�ei� ln(
20X

j=1

e

�ej )=�mci� ln(
20X

j=1

e

�mcj ),

or equivalently,

pi=
e

�ei

P20
j=1e

�ej
=

e

�mci

P20
j=1e

�mcj
, 1 i20.

In particular, if we use energetic costs ci

measured in unit c, and the observed slope

in terms of this unit c is �m, then letting

e=(1/m)c we recover what we have called the

“correct" natural unit e. We note that 1/m is

analogous to the thermodynamic temperature

in statistical mechanics. When we only have

observed data, the slope of the best fitting

straight-line approximating the data may depend

on the scaling in some other way. That is if we

multiply ei by 1/m to get ci, 1 i20, the slope

of the best linear approximation may not multiply

by �m. If it does multiply by �m for all m we

say that the best straight-line approximation is

scale invariant. In this article, we use the reduced

major axis (RMA) regression, which is scale

invariant (Section Materials and Methods below).

As such, the predicted relative abundances are

independent of the scaling of the costs.

RESULTS
Amino acid relative abundances in proteomes

We estimate amino acid relative abundances in

proteomes in two datasets. Dataset DS1 was

derived from 108 fully sequenced and annotated

genomes from the three domains of life (Tekaia and

Yeramian (2006)). We translated coding regions

into protein sequences and counted the frequency

of occurrence of each amino acid, assuming that all

proteins are equally abundant (Table S1). Dataset

DS2 was derived from the PaxDB database

for protein abundances (Wang et al. (2012)).

We considered 17 organisms for which protein

sequence and relative abundance data are available

for more than 50 per cent of the proteome. We

used integrated datasets for the whole organism

whenever possible (Table S2).

For both datasets, we tested several models for

amino acid relative abundances. The results are

shown in Table 1, Figure 1 and Figure S1 below

and described in detail in the next sections.

Correlation of amino acid relative abundances

with metabolic cost

We test two linear relationships between amino

acid relative abundances and the metabolic cost,

measured in ATP molecules per molecule of

amino acid. The first linear relationship correlates

(plain) relative abundances with costs, while the

second one correlates the logarithms of the relative

abundances with costs.
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We used the cost estimation from (Akashi and

Gojobori (2002)), shown in Table 2. Amino acid

biosynthesis pathways are highly conserved across

organisms, as indicated by the high correlation

between published estimations of metabolic cost

(Supplementary material, Table S1 and (Barton

et al. (2010))). Differences in cost estimations

do exist, such as between aerobic and anaerobic

organisms (Supplementary material, Table S1).

However, the main conclusions of this work

are independent of the cost estimation used

(Supplementary material, Tables S2 and S3).

Some organisms in DS1 and DS2 lack the

biosynthetic pathways for some amino acids,

rendering them essential. If an amino acid is

essential, it is obtained from the environment

and may be then used for protein synthesis or

catabolized. Similarly, if an amino acid is not

essential, it may or may not be produced by a

cell. The amount of energy that can be obtained

from catabolizing an essential amino acid is similar

to the amount of energy that is needed for its

synthesis (Swire (2007)). Thus, the incorporation

of essential and non-essential amino acids in

proteins involves similar energy choices.

The plain amino acid relative abundances show

a statistically significant correlation with the

amino acid metabolic cost (in ATP units) for both

datasets, with Pearson coefficients of correlation r

of -0.46 and -0.58 (Table 1 and Figure S1, panels

A and C). The correlation is also observed for

individual organisms in DS1 and DS2 regardless

of genomic GC content (Figure 2, black lines in

panels A and B). These results are in agreement

with previous proposals (Heizer et al. (2011);

Seligmann (2003)).

However, the theoretical model we put forward

suggests that the correlation should improve if we

consider the logarithm of the amino acid relative

abundances instead of the relative abundances

themselves. This is indeed the case, as the r values

decrease to -0.52 and -0.62 for DS1 and DS2

(Table 1 and Figure 1, panels A and D). The

correlation r values decrease for most individual

organisms in DS1 and DS2 regardless of genomic

GC content (Figure 2, blue lines in panels A

and B). We conclude that the theoretical model

presented here describes the data better than the

previously reported empirical relationship between

amino acid costs and relative abundances.

Correlation of amino acid relative abundances

with metabolic cost corrected by amino acid

decay

Amino acids undergo spontaneous chemical

reactions in physiological conditions and degrade

over time. Therefore, the metabolic burden of

amino acids should consider amino acid decay

rates as well as production cost. Since the

experimental determination of the particular

amino acid degradation rate is an extremely

difficult task and we could not find a suitable

set of amino acid decay rates in the literature,

we have deduced a semi-quantitative reactivity

ranking from previous publications and common

knowledge of amino acid chemistry (described in

5
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detail in the supplementary text). We have taken

into account nucleophilicity, redox reactivity and

other biologically relevant reactions (Creighton

(1983)) (Table 2). The physiological relevance

of this proposed ranking is supported by the

presence of energy-consuming enzymatic pathways

that protect proteins against chemical decay

(Moskovitz et al. (1997); Reissner and Aswad

(2003); Stadtman (2006); Ströher and Millar

(2012)). When a cell divides, the offspring cells

inherit the same amino acids as the parent cell

had. The descendant cells have to be energy

efficient on average for the descendant line to

survive. Thus, the average may be taken over very

long time intervals and the amino acid costs in

units of ATP/time should be evolutionary relevant

regardless of the proliferation rate of the cells

under consideration.

Amino acid production cost and decay rates can

be multiplied to yield the amino acid production

cost in units of ATP/time (Table 2). Plain amino

acid production cost can be understood as the

energy the cell spends in making a molecule of

a given amino acid. On the other hand, this new

quantity has units of power and can be understood

as the energy the cell spends per unit of time

in order to keep a constant concentration of a

given amino acid, i.e., the energy flux through the

metabolism of that amino acid (Lotka (1922)).

We reassess the relationship between amino

acid relative abundance and metabolic cost, as

measured by energy flux in units of ATP/time.

We observe a clearly improved correlation between

amino acid energy costs in units of ATP/time and

both amino acid relative abundances and their

logarithms (Table 1). In the case of the correlation

with amino acid relative abundances, the r values

increase to -0.72 and -0.79 for DS1 and DS2

(Figure S1, panels B and D), regardless of genomic

GC content (Figure 2, red lines in panels A and

B). For the correlation with the logarithm of amino

acid relative abundances, the r values further rise

to -0.86 and -0.91 for DS1 and DS2 (Figure 1,

panels B and E). The correlation is better for most

individual organisms in both datasets regardless

of genomic GC content (Figure 2, green lines in

panels A and B). Thus, taking into account the

simultaneous maximization of proteome entropy

and minimization of cost improves the correlation

also when amino acid costs are measured in units

of ATP/time.

The amino acid cysteine is very reactive, has a

low relative abundance (empty symbols in Figures

1 and 4), a low cost in ATP units and a high cost

in ATP/time units (Table 2). Consequently, its

relative abundance is much better predicted when

cost is considered in units of ATP/time (Table

1, Figure 1 and Figure 2). We have recalculated

the correlations for all models excluding cysteine

in order to determine whether the improvement

in the r values is due only to this singular,

very reactive amino acid (Table 1). The main

conclusions of this work are valid for the remaining

19 amino acids as well. As before, the r value

6
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improves when we consider the logarithm of

the relative abundances instead of the relative

abundances. Also, the r value increases when we

consider amino acid costs in units of ATP/time.

We interpret that the proposed theoretical

model, together with the amino acid costs in units

of ATP/time, is a very good descriptor of amino

acid relative abundances in proteomes. Compared

with the initial proposal of a linear relationship

between amino acid relative abundances and

amino acid costs in units of ATP, the r value

improved from -0.46 to -0.86 (DS1) and from -0.58

to -0.91 (DS2).

Correlation of amino acid relative abundances

with the genetic code model

The genetic code model relates amino acid

relative abundance with the transcription and

translation of random DNA sequences of a given

GC content (Dyer (1971); Gupta (2005)). To

evaluate this model with DS1 and DS2 we

retrieved the genomic GC content for each genome

from (Kryukov et al. (2012)) and used it to

calculate the expected relative abundances for all

61 amino acid coding triplets. We then translated

the triplets into amino acids and obtained the

expected amino acid relative abundances in

each proteome. This metabolism-agnostic model

shows a good correlation between calculated

and observed amino acid relative abundances

(Table 1 and Figure 1, panels C and F). The

r values are 0.71 and 0.62 for DS1 and DS2.

The correlation is also observed for individual

organisms in the database regardless of genomic

GC content (Figure 2, dashed lines in panels

A and B). However, the r values are worse

than for the metabolic flux model when amino

acid costs are measured in units of ATP/time

(Table 1). This holds regardless of genomic GC

content (Figure 2). The r value closer to -1

for the metabolic flux model in 105 of the 108

organisms in DS1 (Figure 2, Panel A) and for the

17 organisms in DS2 (Figure 2, Panel B). This

conclusion is also valid if the amino acid cysteine

is excluded from the calculations (Table 1). We

interpret that amino acid relative abundances are

better explained when we take into account the

simultaneous maximization of proteome entropy

and minimization of cost.

The trade-off between amino acid metabolic

cost and protein sequence diversity in natural

proteomes

We postulate a model in which living organisms

maximize a target function f that equals the

entropy of the amino acid distribution in the

proteome h minus the average metabolic cost of

an amino acid
P20

i=1pieim. This gives rise to a

trade-off between both terms. Figure 3 displays

this trade-off for all organisms in DS1 (white

symbols) and DS2 (black symbols). The figure also

shows the expectation for the genetic code model

(red symbols) Figure 3A shows that most natural

proteomes present lower metabolic costs than the

genetic code model. Similarly, the entropies of

natural proteomes are in the same order as the

genetic code model or higher (Figure 3B). Finally,
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the target function f takes higher values in most

natural proteomes than in the genetic code model

(Figure 3C).

Figure 3D plots the entropy h of the amino

acid distribution of a proteome against the

average amino acid metabolic cost in units of

ATP/time. The contour lines indicate constant

values of the target function f . The expectation

for the trade-off model is also displayed (triangles).

Interestingly, each organism reaches the value of

f by a different combination of proteome entropy

and cost, with the costs varying as much as

20 per cent. The values of both entropy and

cost lie within a restricted range. We interpret

that the amino acid relative abundances in

natural proteomes significantly deviate from the

prediction of the genetic code model in a direction

that simultaneously minimizes cost and maximizes

sequence diversity, i.e., towards a better solution

to the trade-off between metabolic cost and

sequence diversity.

Figure 3C and 3D also show that most

proteomes in DS1 and DS2 have near-constant

values of the target function f . The values of f are

close to the expected values for the trade-off model

calculated using equations 1 and 3, the costs in

Table 2 and the values of m for DS1 and DS2 from

Figure 1B and 1E (triangles). This observation

suggests that all organisms are close to a maximum

in f , which is consistent with the maximization

principle we have employed. At a maximum of f

the derivative is zero so the nearby values of the

target function are nearly constant.

DISCUSSION

Previous models for amino acid relative

abundances in proteomes were based on the

minimization of protein synthesis metabolic cost

(Heizer et al. (2011); Seligmann (2003)). However,

the encoding and exploration of protein structure

and function requires sequence diversity. We

propose that the maximization of protein sequence

diversity conflicts with the minimization of

metabolic flux through amino acids in a proteome,

biasing proteome composition. The mathematical

formulation of this concept gives rise to a trade-

off that unites the two phenomena without

introducing further priors and describes proteome

composition with remarkable accuracy (Table 1,

Figure 1 and Figure 2).

Amino acids undergo spontaneous chemical

reactions, as such the estimation of cost must take

amino acid decay into account (Table 2). We show

that this leads to a more accurate description

of amino acid distributions in proteomes (Table

1). Consideration of both sequence diversity and

amino acid turnover may also help in studying

the relationship of amino acid metabolic cost

with protein abundance (Akashi and Gojobori

(2002); Raiford et al. (2008, 2012); Swire (2007)),

with amino acid substitution rates (Barton et al.

(2010); Heizer et al. (2011)) and with the sequence

properties of specific protein classes (Alves and
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Savageau (2005); Perlstein et al. (2007); Smith and

Chapman (2010); Subramanyam et al. (2006)).

Amino acid abundances are fairly well conserved

across organisms, yet do show some variation

(Lightfield et al. (2011)) that is not accounted

for by the organism-independent metabolic flux

model. The unexplained variability in amino acid

abundances is largest for cysteine and lowest

for threonine, aspartic acid and leucine in both

dataset DS1 and dataset DS2 (Tables S4 and

S5). The performance of the model presented

here is slightly worse for extreme values of

genomic GC content (Figure 2). This, together

with the reasonable success of the genetic code

model in explaining amino acid abundances

(Figures 1 and 2), suggests that taking into

account both amino acid metabolic cost and the

genetic code may help future studies of proteome

composition. Other possible sources of across-

organism variability in amino acid abundances

are variations in the metabolic costs and decay

rates as a function of growth temperature and

oxygen tolerance. Regarding oxygen tolerance,

lowering the contribution of redox reactions to

amino acid decay does not improve the description

of proteomes from anaerobic organisms (data not

shown). In the case of cysteine, specific factors

such as sulfur availability and disulfide bond

formation (Beeby et al. (2005)) may play a role

as well. However, the low variability of the other

sulfur-containing amino acid, methionine (Tables

S4 and S5) does not support the importance of

sulfur availability.

The model we put forward allows for a direct

comparison between proteomes on a common

basis (Figure 3). All natural proteomes fall along

a line in the entropy-cost plane. This result

arises from the observed amino acid relative

abundances and the estimated metabolic costs and

is independent from the mathematical shape of the

relationship between abundances and costs. If the

metabolic costs are organism-independent, this

would indicate that there are multiple biological

solutions to the entropy-cost trade-off. Some

proteomes have a lower average per amino acid

cost and lower sequence diversity; while attaining

higher sequence diversity is accompanied by a

higher average per amino acid cost (Figure 3).

If the distribution of amino acids is

equiprobable, the average metabolic cost per

amino acid is 221 in units of ATP/time (Table 2).

For the average relative amino acid abundances

in datasets DS1 and DS2, the average metabolic

cost drops to 129 in units of ATP/time. In other

words, the metabolic cost of making a protein of

length 100 from equiprobable amino acids is the

same as the metabolic cost of making a protein

of length 170 from the amino acid abundances in

datasets DS1 and DS2.

How large is the reduction in proteome sequence

diversity associated to this reduction in proteome

cost? The number of probable proteins of length

100 is e

nh, where h is the entropy. In the case of

9
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equally probable amino acids, h⇡3.00 nats and

the number of probable proteins of length 100

is ⇡10130. For the average relative amino acid

abundances in datasets DS1 and DS2, h⇡2.88

nats and the number of probable proteins of length

100 is ⇡10125. Thus, the number of probable

proteins of length 100 is reduced by a factor of 105

in natural proteomes relative to the equiprobable

case. In itself, this is a sharp restriction in sequence

space. However, it is interesting to compare the

10125 remaining possibilities with the number of

sequences explored by terrestrial life since its

origin (Dryden et al. (2008)). This number lies

between 1020 and 1050, implying that natural

proteomes are making use of only a small fraction

of the available sequence space. To sum up, we

suggest that the cost-diversity trade-off allows for

the efficient synthesis of large proteomes while not

severely restricting protein diversification.

MATERIALS AND METHODS

According to (Sokal and Rohlf (1995, Table

15.1)) and many other authors, we chose to use

here the reduced major axis (RMA) regression

(or least products regression) to fit the data,

which is symmetric in both variables, reflects

better the best line fitting the data when both

variables are subject to errors and is scale invariant

as mentioned in Theory. The RMA regression

computes the line y=mx+b for m,b minimizing

the function

f(m,b)=
nX

i=1

⇣
yi�(mxi+b)

⌘⇣
xi�(

yi�b

m

)
⌘
.

Denoting x̄= 1
n

P
xi, ȳ= 1

n

P
yi for the means, it

is known that in our case

m=�
⇣P

y

2
i �nȳ

2

P
x

2
i �nx̄

2

⌘1/2

and b= ȳ�mx̄.

As usual, the Pearson product-moment

correlation coefficient r, �1r1, given by the

formula

r=

P
(xi�x̄)(yi� ȳ)pPn

i=1(xi�x̄)2
pPn

i=1(yi� ȳ)2

(and satisfying that r

2 equals the usual R

2

coefficient of determination), is used to measure

how well the data fits the line: in our case of

negative slope, the closer r is to �1 the better it is.

Supplementary Material

Supplementary tables S1 and S2, Figure S1

and the supplementary text are available

at Molecular Biology and Evolution online

(http://www.mbe.oxfordjournals.org/).
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FIG. 1. Correlation of the logarithm of amino acid relative abundances in proteomes with metabolic cost in units of ATP
molecules per amino acid molecule (panels A and D), with metabolic cost in units of ATP molecules per amino acid molecule
corrected by amino acid decay (panels B and E) and with the genetic code model (panels C and F). Panels A, B and C
correspond to Dataset DS1, panels D, E and F correspond to Dataset DS2. Data points for the amino acid cysteine are
shown as empty symbols, the rest of the amino acids are shown as black symbols. The lines are RMA regressions to all data
points.
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FIG. 2. Correlation of amino acid relative abundances in proteomes with metabolic cost in units of ATP molecules per
amino acid molecule (black line: plain abundances; blue line: logarithm of the abundances), with metabolic cost in units of
ATP molecules per amino acid molecule corrected by amino acid decay (red line: plain abundances; green line: logarithm of
the abundances) and with the genetic code model (dashed line). Panel A corresponds to Dataset DS1, panels B corresponds
to Dataset DS2. The data are shown as a function of genomic GC content in the x axis.
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FIG. 3. Trade-off between amino acid metabolic cost and proteome sequence diversity. (A) Genomic GC content dependence
of the average metabolic cost per amino acid. (B) Genomic GC content dependence of the proteome entropy. (C) Genomic
GC content dependence of the target function f . (D) Trade-off between amino acid metabolic cost (x-axis) and proteome
sequence diversity measured as entropy (y-axis). The contour lines indicate the value for the target function, and the triangles
correspond to the trade-off model using the values of m for DS1 and DS2 from Figure 1B and 1E. All panels display the 107
organisms in Dataset DS1 (white symbols), the 17 organisms in Dataset DS2 (black symbols) and the genetic code model
(red symbols). Panel D includes genomic GC contents between 0.15 (lower right corner) and 0.75 (lower left corner). The

y-axis legend to the right of panels B and D illustrates the number of probable peptide chains of length 100 given by e100h,
where h is the entropy (Shannon, 1948; Shannon and Weaver, 1949).

Model DS1 DS1 (no C) DS2 DS2 (no C)

Cost(ATP) vs. abundance -0.46 -0.51 -0.58 -0.64

Cost(ATP) vs. ln(abundance) -0.52 -0.64 -0.62 -0.75

Cost(ATP/time) vs. abundance -0.72 -0.68 -0.80 -0.76

Cost(ATP/time) vs. ln(abundance) -0.86 -0.83 -0.91 -0.90

Genetic code model vs. ln(abundance) 0.71 0.76 0.62 0.66

Table 1. Pearson’s correlation coefficients for correlation of amino acid relative abundances with amino acid metabolic cost
and a model based on the genetic code. The two columns labeled with (no C) are the results of the same calculations
excluding the amino acid cysteine

14

 at Sistem
a de B

ibliotecas y de Inform
ación U

niversidad de B
uenos A

ires on A
ugust 13, 2014

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/


i
i

“NaiveIdea-MBE-25-06-14” — 2014/7/2 — 18:59 — page 15 — #16 i
i

i
i

i
i

MBE

Amino Cost Decay Cost

acid (ATP) (1/time) (ATP/time)

A 11.7 1 12

C 24.7 30 741

D 12.7 9 114

E 15.3 5 77

F 52 4 208

G 11.7 1 12

H 38.3 14 536

I 32.3 2 65

K 30.3 8 242

L 27.3 2 55

M 34.3 13 446

N 14.7 10 147

P 20.3 3 61

Q 16.3 8 130

R 27.3 4 109

S 11.7 6 70

T 18.7 6 112

V 23.3 2 47

W 74.3 12 892

Y 50 7 350

Table 2. Amino acid metabolic cost. Costs in units of ATP molecules per amino acid molecule are from (Akashi and Gojobori,
2002), costs in units of ATP molecules per amino acid molecule corrected by amino acid decay are from this work. The
estimation of amino acid reactivity and decay rates (in relative units) is described in the supplementary material
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