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Abstract 

In this review, we discuss disease-causing alterations of RUNT-related transcription factor 

1 (RUNX1), a master regulator of hematopoietic differentiation.  Familial platelet disorder 

with predisposition to myeloid leukemia (FPDMM) typically present with 1) mild to 

moderate thrombocytopenia with normal-sized platelets; 2) functional platelets defects 

leading to prolonged bleeding; and 3) an increased risk to develop MDS, AML or T-ALL. 

Hematological neoplasms in carriers of a germline RUNX1 mutation need additional 

secondary mutations or chromosome aberrations to develop. If a disease-causing mutation 

is known in the family, it is important to prevent hematopoietic stem cell transplantation 

from a sibling or other relative carrying the familial mutation. First experiments 

introducing a wild-type copy of RUNX1 into iPSC lines from patients with FPDMM 

appear to demonstrate that by gene correction reversal of the phenotype may be possible.  

 

 

 



 Definition of RUNX1 deficiency/ FPDMM 

RUNT-related transcription factor 1 (RUNX1), previously named core binding factor A2 

(CBFA2) and acute myeloid leukemia 1 (AML1), is a master regulator of hematopoiesis 

[1]. It is involved in the most frequent chromosome translocations in leukemia (i.e. 

t(12;21)/RUNX1/ETV6 in pediatric acute lymphoblastic leukemia, 

t(8;21)/RUNX1/RUNX1T1 in acute myeloid leukemia (AML), and t(3;21)/RUNX1/EVI1 in 

therapy-related AML or chronic myeloid leukemia in blast phase [2, 3]. Moreover, 

somatic RUNX1 mutations have recently been identified as recurrent abnormalities in 

myelodysplastic syndromes (MDS) and AML [4]. These somatic changes are associated 

with poor prognosis in AML and MDS indicating an increased resistance against exposure 

to genotoxic agents. RUNX1 mutations seem to trigger progression into MDS and AML in 

Fanconi anemia and severe congenital neutropenia [5, 6].  

Song et al. (1999) were the first to describe heterozygous germline RUNX1 mutations in 

six families, each carrying a different mutation. Individuals carrying germline RUNX1 

may be asymptomatic throughout lifetime or develop familial platelet disorder with 

myeloid malignancies (i.e. FPDMM, OMIM 601399). Characteristic features are 1) mild 

to moderate thrombocytopenia; 2) functional platelets defects leading to prolonged 

bleeding; and 3) an increased risk to develop MDS, AML or T-ALL. There is a great 

phenotypic heterogeneity. FPDMM is inherited in an autosomal dominant fashion with 

incomplete penetrance and variable expressivity. 

 

 Diagnostic criteria to identify persons at risk 

Since the diagnosis of FPDMM in a patient with leukemia carries important critical 

implications for the patient and also for her/his family, it is important to recognize clinical 



features pointing to this genetic predisposition [7]. An important clinical feature is 

persisting thrombocytopenia or aspirin-like platelet disorder, which are not explained by 

other reasons. 

Thorough pedigree analysis may identify first or second degree relatives with bleeding 

tendency or hematological neoplasms. It has to be kept in mind that the symptoms may be 

mild, that hematological neoplasms may present as MDS, AML or T-cell leukemias, and 

that onset of overt leukemia can be from childhood to adulthood [8]. In case there is a 

family history of MDS, early onset cancer or a personal history of bleeding tendency, 

immune deficiency, dysmorphic features and/or intellectual deficits, persons at risk should 

be transferred to genetic counselling [9, 10].  

Comprehensive genetic evaluation and counseling involves a thorough review of an 

individual’s personal medical and family history, including review of somatic cytogenetic 

and molecular test results and review of medical diagnoses in family members [11]. 

Through the process of genetic counseling, individuals with leukemia are educated 

regarding the known hereditary etiologies for hematologic malignancies, provided a 

personalized risk assessment of the likelihood of a hereditary predisposition within his/her 

family, and if indicated , offered genetic testing to investigate the possibility of a germline 

mutation (The University of Chicago Hematopoietic Malignancies Risk Team 2016). As 

part of genetic counseling, psychosocial assessment and counseling is also provided 

surrounding psychological concerns unique to hereditary cancer predisposition 

syndromes, including coping with a diagnosis of cancer, uncertainty, fear of having 

potentially inherited or passed a cancer predisposition to children [12]. Family members, 

even those not having inherited a cancer predisposition, may suffer from (survivors’) 

guilt.  



In case transplantation from a HLA-matched sibling donor is planned, germline RUNX1 

mutation analysis has to be discussed. It allows to exclude sibling donors, who may be 

occult carriers of the same genetic syndrome, to prevent adverse outcomes after 

transplantation like poor stem cell mobilization, delayed engraftment, and increased 

mortality [13, 14]. Thus, predictive testing of healthy relatives, even of minors, is 

indicated [15].  

Whether there is a distinct subtype of MDS associated with (germline) RUNX1 mutations 

needs to be evaluated. Functional analyses show that the absence of RUNX1 results in 

complete blockage of the differentiation of hematopoietic stem cells [16]. Adult AML 

with acquired RUNX1 mutations often presents as immature subtype M0 [17, 18]. 

In recent years, with the advance of sequencing technologies, many individuals at risk are 

identified by sequencing large cohorts of patients with MDS or AML and by follow-up of 

their relatives. Particularly leukemias with homozygous RUNX1 mutations, bi-allelic 

RUNX1 mutations in trans, RUNX1 mutations at a heterozygous allele frequency of 50% 

and trisomy 21 indicate that the patients are candidates to carry heterozygous germline 

RUNX1 mutations causing FPDMM [19, 20]. 

 

 Platelet features 

A personal or family history of low platelet counts and/or bleeding diathesis may be a clue 

to recognize FPDMM in patients presenting with MDS/AML/T-ALL. Thrombocytopenia 

is usually mild to moderate and, in some cases, platelet counts may be low-normal or even 

normal. Platelet size is not affected, similar to other inherited myeloid malignancy 

syndromes associated with thrombocytopenia, such as ETV6- and ANKRD26-related 

thrombocytopenias , which are also characterized by normal-sized platelets [21]. 



Thrombocytopenia is due to abnormal megakaryocyte maturation and polyploidization 

and impaired proplatelet formation [22]. Dysmegakaryopoiesis is the most prominent 

abnormality in bone marrow smears, and is evident even before leukemic transformation 

[8, 22].  

A platelet function defect is present in most, if not all, patients with RUNX1 germline 

mutations, leading to abnormal secretion and aggregation. Dense-granule storage pool 

deficiency represents the most frequent abnormality [8], although other defects, such as 

partial alpha-granule deficiency, impaired activation of the fibrinogen receptor, GPIIbIIIa, 

and defective platelet spreading have also been described in some patients [23-25]. The 

bleeding diathesis is variable within and among families. As some carriers of RUNX1 

mutations may have mild or no bleeding manifestations, the presence of the mutation may 

go unnoticed and genetic screening is necessary to adequately determine the mutational 

status.  

The finding of platelet abnormalities in patients with FPDMM has revealed the essential 

role of RUNX1 in the megakaryocytic lineage. RUNX1 acts at different stages of 

megakaryocyte development by regulating the expression of several molecules relevant to 

platelet production and function. Reduced expression of RUNX1 target genes, including 

MPL proto-oncogene, thrombopoietin receptor (MPL), non-muscle myosin IIA/myosin 

heavy chain 9 (MYH9) and its regulatory chain MLC2, arachidonate 12-lipoxygenase 

(ALOX12) and NFE2, have been shown to underlie the defect in platelet number and 

function in FPDMM, which involves multiple pathways [22, 24, 26, 27]. In addition, 

increased levels of non-muscle myosin IIB (MYH10), which is physiologically repressed 

by RUNX1 during normal megakaryocyte development, contributes to thrombocytopenia 

by blocking megakaryocyte polyploidization. Persistent expression of MYH10 in platelets 

has been proposed as a biomarker of RUNX1 mutation [28]. 



 

 Functional properties of RUNX1 

RUNX1 is a master regulator of hematopoietic differentiation. RUNX1 plays an important 

role in the first wave of hematopoiesis yielding primitive erythroid cells and 

megakaryocytes [16, 29]. By enhanced expression of CEBPE, it negatively regulates 

myeloid progenitors and induces granulocytic differentiation [30]. Moreover, RUNX1 

binds MLL and methylated H3K4 at PU.1-regulatory regions. RUNX1 mutations impair 

this interaction resulting in loss of the H3K4me3 mark within PU.1-regulatory regions, 

and decreased PU.1expression [31]. 

The granulo/myeloid (G/M) progenitors in Runx1 knock-out mice have an increased 

clonogenic potential. RUNX1 haploinsufficiency coincides with a overexpression of 

CEBPA and downregulation of CEBPE [30], and with G-CSF hypersensitivity [32]. G/M 

and megakaryocytic colonies have an immature morphology indicating a shift towards 

regeneration and an impaired differentiation [33]. Recent data show that RUNX1 also 

regulates cell adhesion to the bone marrow niche, since Runx1-deficient lineage-

committed myeloid progenitors have increased binding to stromal cells [33].  

Upon dimerizing with core binding factor beta (CBFB), RUNX1 binds to promotor 

regions of several transcription factors like PU.1 regulating their expression [1]. Runx1 

binding in GMPs correlates with C/ebpa binding and open chromatin [33]. Upon binding 

of cis-regulatory elements, strong repressors/corepressors, e.g. Gfi1, Sin3a, or protein 

arginine methyltransferase 6 (PRMT6), may be recruited [34].  

Binding to DNA and CBFB occurs in the highly conserved Runt homology domain 

(RHD) at the N-terminal, transactivation via the transactivation domain at the C-terminal 

part of RUNX1. Most mutations occur in the N-terminal region. Mutations affecting the 



C-terminal part of RUNX1 attenuate the DNA-damage repair response in hematopoietic 

stem cells [35]. RUNX1 deficiency results in a reduced ribosome biosynthesis, attenuated 

unfolding protein response, a reduced metabolic profile, lower p53 levels and decreased 

apoptosis, in line with a model of RUNX1 loss-of-function mutations generating 

genotoxic stress-resistant hematopoietic stem cells that outcompete normal HSPC [36]. 

 

 Phenotype/ genotype correlation 

Most RUNX1 mutations lie in the Runt homology domain (RHD). Causative mutations are 

most often frameshift, nonsense, or in/del mutations that result in premature protein 

truncation. There are also a number of different missense mutations (Fig. 1A, Fig. 2). 

Particularly in case of missense mutations, it may be difficult to determine if a genetic 

variant is a pathogenic disease-causing mutation or a benign variant. Here, functional 

analyses are needed to better understand the individual consequences. Mutation in RHD, 

located in the N-terminal part of the protein, impair normal RUNX1 functions through 

hindered heterodimerization and/or DNA binding [8].  

They, as well as mutations in the 5‘ regulatory region, can be summarized as loss-of-

function mutations and haploinsufficiency [37]. Missense mutations in the RUNT 

homology domain, nonsense and frameshift mutations in the C-terminal domain may lead 

to dominant negative effects [8]. A family with the L472X mutation (according to RUNX1 

transcript 1c, L445X according to RUNX1 transcript 1b) in the 3‘ region of the gene may 

predispose to a FPDMM phenotype with severe eczema  [38]. Moreover, there may be 

inherited structural rearrangements involving RUNX1 [39]. FPDMM can also be due to 

small deletions involving a few base pairs or single exons of the gene and large deletions 

leading to loss of the complete coding regions (Fig. 1B). Deletions of large proportions of 



the long arm of chromosome 21 cause a contiguous gene syndrome with various clinical 

signs, e.g. dysmorphisms, mental retardation, thrombocytopenia and increased risk to 

develop leukemia [9, 10]. Under diagnostic conditions, these large frequently de novo 

deletions can most reliably be detected by arrayCGH/ SNP arrays [8, 10, 15, 40].  

There seems to be a higher risk of leukemic transformation in case of dominant-negative 

point mutations of RUNX1 as compared to loss of function mutations [8]. While both 

types of alternations lead to defect megakaryopoiesis and thrombocytopenia, only 

dominant-negative point mutations enhance the proliferation rate and clonogenic potential 

of the granulomonocytic population [29]. This correlates with complete inactivation of 

RUNX1 and the downregulation of NR4A3 [41]. Moreover, an increased genetic instability 

accompanied with a decreased expression of the p53-dependent genes p21 and GADD45A 

was observed in the expanded granulomonocytic population [29]. 

However, there is no clear phenotype/ genotype correlation. Within one family, family 

members carrying the same mutation can present with very different clinical signs and 

severity. In one family, for example, the father only had mild thrombocytopenia, while 

three children suffered from myeloid neoplasms [42].  

 

 Malignant transformation 

The risk of malignant transformation into MDS and AML is estimated to be 30-40% [14]. 

Patients carrying RUNX1 mutations with a dominant-negative effect appear to have a 

higher risk of malignant transformation than patients carrying haploinsufficient RUNX1 

mutations [26, 43]. Different AML FAB subtypes have been reported to occur, while 

refractory anemia with excess blasts, chronic myelomonocytic leukemia and hypoplastic 

MDS with myelofibrosis have been described among the cases with MDS and 



MPN/MDS. Although malignant transformation most frequently involves the myeloid 

lineage (MDS/AML), T-cell ALL has also been described, probably related to the role of 

RUNX1 in T-cell differentiation. Onset of MDS/ AML is at an average of 33 years, with a 

wide age range, whereas T-cell ALL usually develops at a younger age [11, 19].  

During the course of the disease, the second allele may be inactivated, as expected for 

tumor suppressor genes according to Knudson‘s two-hit hypothesis. As mentioned, there 

may be second RUNX1 alterations and duplications of the mutated allele associated with 

acquired trisomy 21 [20, 39]. 

Currently there are no definite answers as to what triggers the malignant transformation in 

carriers of germline RUNX1 mutations. However, clonal hematopoiesis was identified in 

more than two thirds of young asymptomatic germline RUNX1 mutation carriers. The 

somatic mutations had median variant allele frequencies comparable to MDS/AML 

patients and included a DNMT3A variant, an epigenetic regulator frequently mutated in 

MDS/ AML. These findings suggest that clonally skewed hematopoiesis frequently 

precedes development of overt MDS/AML in FPDMM [44]. 

 

 Genetic changes triggering malignant transformation 

Hematological neoplasms in carriers of a germline RUNX1 mutation need additional 

secondary mutations to develop. Often myeloid neoplasms display a bi-allelic alteration of 

RUNX1, due to secondary RUNX1 mutations or trisomy 21 resulting in the duplication of 

the mutated allele [19, 20, 45]. It appears that germline RUNX1 mutations are associated 

with chromosome aberrations typical for MDS and AML, like del(5q), del(7q), +8 or –Y 

[44, 46]. In adult sporadic AML, RUNX1 mutations are associated with MLL partial 

tandem duplications, FLT3-ITD, IDH1/2 and RAS mutations, and ETV6 rearrangements. 



They often occur in therapy-related AML [17, 18, 47]. RUNX1 was frequently mutated in 

myeloid neoplasms in atomic-bomb survivors and in patients with radiation therapy-

related myeloid neoplasms  [48, 49]. 

The nature of these secondary mutations may decide when and what kind of malignancy, 

either MDS, AML or a T-cell neoplasm develops. We reported a family with a father and 

a daughter carrying the same germline RUNX1 mutation c.520C>T; p.(Arg174Ter). The 

father got MDS at the age of 47 years, the daughter at the age of 13 years. In the father, 

loss of the Y chromosome was found, a cytogenetic abnormality associated with good 

prognosis. The daughter had a structurally complex karyotype including deletion of 5q, a 

very poor cytogenetic risk factor in childhood MDS [50]. In this family, the different 

secondary abnormalities may have had an impact on the age of onset and the clinical 

severity of the disease [46]. Del(5q) is one of the somatic mutations repeatedly reported to 

occur in FPDMM [44].  

Recently, malignant transformation was reported to be mediated by recurrent somatic 

mutations in CDC25C gene in up to a half of FPD/AML patients. CDC25C mutations act 

to enhance mitotic entry and appear to be an early driver event of malignant 

transformation, followed by acquisition of additional mutations, most notably somatic 

mutations in GATA2 [51]. Other studies were not able to confirm these findings [19, 44].  

Next generation sequencing allows to detect additional mutations in known MDS/AML 

drivers, e.g. ASXL1, TET2, IDH1, CEBPD, RB1, MLL2, FLT3-ITD, WT1, and SRSF2 [19, 

44, 45, 52] 

 Clinical management 

Currently MDS and AML in patients carrying a germline mutation is not differently 

treated. However, if a disease-causing mutation is known in the family, it is important to 



prevent hematopoietic stem cell transplantation from a sibling or other relative carrying 

the familial mutation.  

Especially in families with high penetrance regarding leukemia, regular clinical 

examinations, i.e. differential blood cell counts and annual bone marrow aspirates with 

morphological, cytogenetic and molecular genetic investigations to detect early signs of 

leukemic initiation should be discussed with affected individuals [15, 53] reported a 

patient with increasing thrombocytopenia, who developed a small CD34+ clone with 

aberrant expression of myeloid markers (CD13 increased, CD33 and CD38 decreased, 

CD117 and CD123 increased) suggesting that patients with FPDMM, their families and 

their responsible physicians should be familiar with suspicious clinical symptoms of 

developing leukemia.  

Using new NGS technologies, it is possible to follow-up clonal hematopoiesis. Future 

studies will show whether serial analysis of clonal hematopoiesis can provide biomarkers 

for early detection of disease progression in mutation carriers from these high-risk 

families [44]. 

 

 Outlook 

FPD-iPSCs are a useful tool to investigate mutant RUNX1-mediated molecular processes 

in hematopoiesis and leukemogenesis [29]. Introducing a wild-type copy of RUNX1 into 

iPSC lines from patients with FPDMM reversed most of the hematopoietic differentiation 

defects and resulted in a significant increase of both the number of megakaryocytic 

progenitors and of erythroid progenitors. In parallel, the number of granulomonocytic 

progenitors decreased to control levels indicating that the leukemic potential may also be 

reduced [54]. Alternative approaches used transcription activator-like effector nucleases 



(TALEN) and a plasmid containing wild type RUNX1 cDNA sequences in patient-derived 

iPS cells [55]. These experiments appear to demonstrate that by gene correction reversal 

of the phenotype may be possible.  
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Figure legends 

Figure 1: Detection of a pathogenic RUNX1 mutation. A; Missense mutation 

c.602G>;p.(Arg201Gln) identified using Next Generation Sequencing , provided by 

courtesy of Kathrin Thomay and Gudrun Göhring. B; Large deletion leading to the loss of 

the entire RUNX1 gene identified using array CGH, provided by courtesy of Tim 

Ripperger and Doris Steinemann.  



 

Figure 2: Schematic representation of germline RUNX1 mutations. RUNX1 mutation 

nomenclature is based on the reference sequence of transcript variant RUNX1b (Uniprot 

reference Q01196-1, 453 amino acids). Due to space limitations and for the sake of 

clarity, one-letter code is used. Frameshift mutations are depicted in blue, missense 

mutations in green, and nonsense mutations in red. RHD, Runt homology domain (50-

177aa); TAD, transactivation domain (242-411aa). [8, 19, 20, 26, 39-41, 43, 45, 46, 52, 

56-70]  
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