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The central role played by pseudodifferential operators in relativistic dynamics is
known very well. In this work, operators like the Schrodinger one (e.g., square root)
are treated from the point of view of the non-local pseudodifferential Green functions.
Starting from the explicit construction of the Green (semigroup) theoretical kernel, a
theorem linking the integrability conditions and their dependence on the spacetime
dimensions is given. Relativistic wave equations with arbitrary spin and the causality
problem are discussed with the algebraic interpretation of the radical operator and
their relation with coherent and squeezed states. Also we perform by means of pure
theoretical procedures (based in physical concepts and symmetry) the relativistic
position operator which satisfies the conditions of integrability: it is a non-local,
Lorentz invariant and does not have the same problems as the “local”’position operator
proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue
waves, are presented and deeply analyzed in this theoretical framework. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4953368]

. INTRODUCTION

Since long time ago, the correct mathematical treatment of various operators that contain a
nonlinear character called the permanent attention of researchers in both physics and mathematics.
In particular, the natural introduction of the square root of the fundamental operators (Hamiltonian,
Lagrangian) in the field of relativistic theories has brought not only the problem of mathemat-
ical treatment of these non-local and nonlinear operators, but its physical interpretation also. The
conceptual fact to find the physical interpretation of the square root operator has not only addressed
the classical dynamics but in particular its action on physical states of the system, mainly in the
quantum case (spectrum). About this issue, the works of Salpeter and others?” are very well known.
From the purely formal point of view, the mathematical developments have been oriented in the
area of the pseudodifferential operators with the works of Ref. 24 and in the theory of semigroups,
mainly with the research of Yosida.?

Several different physical scenarios have been shown in which the correct description is made
by means of these pseudodifferential operators. For example, in Ref. 23 a semi-analytical compu-
tation of the three dimensional Green function of a pseudodifferential operator for seakeeping flow
problems is proposed where the potential flow model is assumed with harmonic dependence on time
and a linearized free surface boundary condition. Also in Ref. 26, the pseudodifferential operator
is introduced in Carson’s integral computation (the original expression involves the evaluation of
just one Struve and one Bessel function) and used in power systems analysis for evaluating the
earth-return impedance of overhead conductors above homogeneous earth.

The starting point in this article is to analyze the classical radical operator from the viewpoint
of Green functions connecting these results with previous investigations in which we have related
these types of operators with the well known problem of localization and proper time. In the second
place, we will show the purely algebraic representation giving an interpretation of such operators.
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This algebraic interpretation is very important because it brings the possibility to make a link with
pseudodifferential operators and semigroup (Fourier-Integral) representations:

algebraic

interpretation

/ N

. . semigroup
pseudodif ferential operators —

(Fourier — Integral representations)

and consequently with the relativistic wave equations of arbitrary spin states (in particular of
parastatistical ones). Several examples, from our earlier references on the subject (e.g., Refs. 29 and
44), and new ones (as the important problem of rogue waves) are analyzed and discussed. Finally,
we discuss other important questions that will be treated in detail somewhere®’ as the role of the
spin, the dispersion in time of the physical states, and the Levy processes.*

Il. GREEN FUNCTIONS AND PSEUDODIFFERENTIAL OPERATORS

The Schrodinger operator is, in general, the main object of study both: in theoretical physics
and mathematics and from the classical to the quantum point of view. However, from the operator
viewpoint, the relativistic form (e.g., square root) carry conceptual and technical troubles. As we
have discussed before,!>** the conceptual trouble coming from three sources: the meaning of the
Lagrangian as measure, the localization (one particle/ensemble interpretation), and the relation with
spin degrees of freedom; meanwhile, the technical one is given by the square root form of the
Lagrangian/Hamiltonian when is treated as operator.® Consequently, in this paper our starting point
will be the following simple mathematical object (principal kernel):

L= +/%+m? (D)

that is, characteristic inside the fundamental Schrodinger type equation to solve (g, = (+ — ——); 4,
v =0,1,2,3)), namely,

0w (1) = (2;)3 [ [Nesmecrvyapdvac=mu @

and in having account that the square root operator above is well defined in such pseudodifferential
representation due to its strong elliptness (for instance, /2 = y; ¢t with i, j = 1,2,3), the solution
for the source which is a delta function becomes

i0,G (1,x) - (2;)3 / / 4 m2eEOTIG (b, y) Py d’ = ~6 ()6 (1). 3)

We perform the Fourier transform obtaining
1 2 2 —i(wt-p-x) j3 1 —i(wt-p-x) j3
) (WG (w,p) — A/ p> + M*G (w,p))e d’pdw = _(277)4 e d’pdw, (4)
consequently we have in the momentum space

1 1
G ("-)’p) = - . (5)
2n) w—p>+m?
Anti-transforming back to x—space we obtain
1 —i(wt-p-x)
G(t,x) = - ¢ Ppdw. (6)

et w- \p?+m?
Choosing a path over the complex plane, the integration over w can be performed. Then we replace

the denominator by w — (1 Fig) /p* + m? with £ > 0 evidently. Integration along a in the upper
half plane gives G (¢, x) and the other one G~ (¢, x)



063503-3 Diego Julio Cirilo-Lombardo J. Math. Phys. 57, 063503 (2016)

G* (1) = i : limg(t)/e—i((l—ia)\/p2+m2[—p.x)d3p’ ™
(27'[) -0
G- (Z‘,x) - _ 1 . lima(_t)/ei((l+i£)\/p2+m2tp.x)d3p, (8)
(Zﬂ') -0

where 6(fr) is the Theta (step) function. Notice that Gp = G*(t,x)— G (t,x) = (2‘7)3
AT,

Integration with respect to d°p is performed as follows: we write in the spherical prescription
only for simplicity, p - x = |p| |x| cos 6 and integrating with respect to ¢ and 0

] —i|(lFie 24 m2t—|p||x .
G*(1,x) = +—— limH(it)/e (G 'C°S")p2dpsmed9d¢ 9)
(27‘[) £—0
2i .
= i(z ’)2 lim 6 (1) / e i10FNPHm2 ) s gin (Ip] |x]) (10)
T £

2i
=+

K, (m\/xz -1 7 is)2)
lim 0 ()it (1 Fig)m?

(2n)* &= 2 -1 Fie)
where we have used Ref. 28 (formulas 3.915).

(1)

lll. RELATION WITH THE OPERATIONAL APPROACH: EXAMPLE IN ONE DIMENSION

From the fundamental equation to solve (g, = (+ — ——); u,v = 0,1,2,3)),

i0n (t,x) = (2;)3 / / 2+ m2e Oy (1 y) dydl = H (t,x) (12)

and in having account that the square root operator above is well defined in such pseudodifferential
representation due to its strong elliptness (for instance, 2= vij'¢ with i, j = 1,2,3), the solution
for the source becomes

i6,G (t,x) — (2;)3 //,/g2+m2e"<'<x—y>c (t,y)dydl = =5 (x) 6 (7). (13)

We perform the Fourier transform obtaining

. 1 .
(WG (w,p) — A/ p2 + M2G (w, p))e @ Pdpdw = — / e WP apdw,  (14)
/ P p P p o p

consequently we have in the momentum space

1
G(w,p) = ———F—. 5)
w —+/p*+m?
Anti-transforming back to x—space we have
( ) 1 e—i(wt—p-x)
G(t,x)=— dpdw. (16)
Q) w-~pr+m?

Again, choosing a path over the complex plane, the integration over w can be performed. Then, we
replace the denominator by w — (1 Fig) 4/ p? + m2 with & > 0 as is evident. Integration along a in
the upper half plane gives G* (¢, x) and the other one G~ (¢, x)

) —i —i8V2m2—~x
G* (1.x) = ;—ﬂl%@(t)/e (miepzemior) (17
) -1 ie 24m2t—p-x
G’U’x):—zl—,rg‘}ﬁ(—f)/e (a+iVpZemi-p )dp’ (18)
i —i|V 24m2t—-p-x
where 6 (¢) is the Theta (step) function. Notice that G* (¢,x) — G~ (t,x) = 5= Je ( premsi=p )dp.
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Integration with respect to dp is performed directly obtaining

K (mﬂ)c2 -t}(1 7 is)z)
\Jx2 =121 Fig)’
where we have used Ref. 28 (formulas 3.914).

Now we will make the proof about the direct relation between the operational approach and the
Green function one.
We know that

LG(Lx)Ei&CHLx)—(2;f‘/:/,/§2+nﬂ84”_wG(ny)dyd§ (20)

= -5(x)6 (1) 1)

then, the solution given by the difference of the fundamental Green functions is the solution of the
free Salpeter equation with constant initial condition

LGp = L(G* (t,x) - G~ (1,x)) = 0, (22)

G (1,x) = +— 1im 6 (1) it (1 F ig)m (19)
21 £—-0

multiplication with the general initial condition as (a is some constant)
—i 24im28-p’a
%(p)za/e oremrte)s ) ap (23)

is also solution. It is useful to note that Wy (p) acts as convolution due to its reproducing properties
(notice the obvious fact that have the same fashion that the kernel for the square root transformation
as in the Schwartzian case) making a general shift in time and space

(G+ (t,x) -G (t,x)) \PO (p) — 2l_7r / e*‘(\/p2+m2(t+ﬂ)*l7()6+(l)>dp =0 (24)

K%mJu+af—0+ﬁﬂ

(25)

1
=5+ Bm
¢ Ja+a? -+ py
Then, the suitable initial condition for the vacuum acts also as potential in the Green’s method
(for any G* (¢, x))

. —ilVp2+m2B8-pa
/(wGi (w,p) — A/ p* + m2G* (w, p))e @ =P X ( prmpp )dpda) = (26)
- _ 1 / e—i(wt—p~x)dpdwe_i( VP2+m23_P“’).
(n)*

IV. THE DIMENSION-DEPENDENCE OF THE GREEN FUNCTION

Theorem 1. The Green function of the square root pseudodifferential operator in the case of
even dimensional spacetime is exactly integrable being expressed in a closed form as derivatives of
the Mac Donald’s function K, (Modified Bessel Function of the Second Kind).

Proof. Following the procedure previously introduced, we introduce hyperspherical coordinates
as usual
X1 =rcos gy, (27)
Xy = rsin ¢ cos ¢y,

X3 = rsin ¢; sin ¢, cos @3, onumber (28)

XN = 7 Sin ¢ sin ¢, sin ¢3 - - - sin Py _1 COS P,
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consequently, our problem will be the following integral:
—i|(1Fie)y 24m2t—|p||x . . .
/e <(1 IV pZem7t=pl ICOsel)pl\’_ldp sin 01d0; sin 6,dB; - - - sin Oy _1dOn_1dp = (29)

_ F/e—i((1+i8)\/p2+m21—|p||x|cos(il)pN_ldp in 6,6,

=]

where is a numerical factor coming from the: sin 6,d6, - - - sin 6 _;d0y_1dy integration

F = / sin 62d6; - - - sinOy_1dOn_1d = 272N 72, (30)
Let us to compute the [ integral, integrating in 6, first

—i|(l¥ie 24m2t—|p||x
I:/e ((1 YV p+m?i=|pl| |00391)p1v—1dp(_dc0s91) 31)

Op=r
0;0)
_/ —i(1Fig)\ p2+m?t p dp (_e—i|p||x|+ei\p|\x|)

llpl IXI

_/ -z<1+zs>mfp dp2SlH(|P| |x]).

We have been solved the case for d = 2(N = 1) and d = 4(N = 3). We can demonstrate the integra-
bility of the higher dimensional family of cases where the spacetime dimension is even d = 1 + N.
The starting point is to use the formula

—i s 6
_ /e_i(l‘Tis)‘,pz-sztpN_ldp(— e i|p|lx|cos 6

i|pl x| cos 6,

id N-3
pNsin(IplIx]) = (;—x) (psin(|pl|x])). (32)

for example,
5-3

d
p*sin(Ipl |+l) = == (psin (Ip| [x))
d* d
psin (Ipl ) = == (psin (Ipl [x1)) = =p*—— (cos (| 1x]) = +p*sin (Ip|}x1)

for example,

-3

psin(IplIx]) = (psin(|p| |x])

% 7 3

5 d? 4 d
psin (1pl [x1) = p?= (cos (] [xD) = =p* = (sin |p| [x)) = =p* <= cos (Ip| |+]) =
= +psin (Ip| [x)

then, the expression (31) becomes

1=/ —i(1%ie)Vp 2+’"2fp dp2SlH(|P| |x[) = Gy
id —i(lFie m
_ m(_) [/ i(1Fig)\ p2+ tpdpsm(|p| |x|)]

dx

id\V| 2 Kz(m“xz_tz(lﬂg)z)
:z(d_) 2 im0 (20)it (1 7 is) m?

X

(2m)? &0 2 —2(1 Fis)?

consequently for the case of (2M + 1,1) dimensions (e.g., even dimensions) we have
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K> (m\/xz -1+ i5)2)

x2— X1 Fig)’

. \N-3
Gi(t,x)=ﬂ2N(£) +

2i

)’

lim 0 (x0)it (1 T ig)m? (34)

dx

Remark 2. The integrability in even dimensions is due to an underlying symplectic structure
(“phase space map,” only valid in even number of spacetime dimensions). |

V. RELATIVISTIC POSITION OPERATOR FROM VELOCITY OPERATOR
A. Velocity operator: definition and action

Canonically the reasonable assumption as our starting point are the following relations:

H (x,p) = \/p*+ m? (35)

and
d, 0H (x,
A Go
dx O0H (x,
== —a(p P (37)
Then, the velocity operator is defined from
. dX® . ~
= = [H (x,p),x"] (38)
_0H(x.p)  6Ppg (39)
- Opa N \/p2+m2’
with the action as
1 e
@™y) (t,x) = a / / () ey (1 y) dPyd’, (40)
@) (1) = — iy (1, y) Py’ (1)
’ (2n)? V2 + m? ' ‘
1 // {* ity 3,72
= e's (t,y)d’yd¢.
o) | JEeme Pwdvde
In 1+1 dimensions we have
1 I e
e - iZ(x-y)
@0 =g [ [ e i )
and knowing that
1 K (m yz—tz)
t = —tm——— 43
‘7//( ) y)|1+1 271_ m \/m ( )
we insert it in (42), then, the equation to solve becomes
1 é’(l . _ 1 Kl (m y2_t2)
) (1.x) = — i-y)___ gy N Y7 gy 44
@0 =5 [ [ = ey @)

Using formula GR 3.365 (2) in the m # 0 case (the non-massive case will be analyzed separately),
the expression to integrate in y is

- ! . K1 (myy>-7)
@*y)(t,x) = (zﬂ)z//lmzKl (m(x — y)ﬁﬁd% 45
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consequently, the action of the velocity operator on the state solution given by the “square root”
Hamiltonian is (using GR 78

m2 2
@) (1, x) = (2711)2?;1(, (m,lz(xz - t2)) (46)
(K., =K,).

The extension to more dimensions is straightforward.

B. Determination of the relativistic position operator

Theorem 3. The canonical position operator in p-representation, namely, d,, acting on the
convoluted state (23) (equivalent to the initial condition in the operatorial approach) determines (in
the case of null eigenvalue) univoquely and simultaneously the action of the velocity operator in the
p representation plus the ground state of the physical system under consideration.

Proof. From the initial condition (23) (the kernel can be straightforwardly extended to any
dimension) we have

W (p) = ae~ (VP mBr'a), (47)

Operating with X — 9,, (e.g.: momentum representation) we can see that

0,Wo (p) = —i {L —a| ¥ (p). (48)
P+ m2
Then
_ rh _
p¥o(p) =0 > ——=Yo(p) = Vo (p), (49)
[p? + m?
we obtain the action of the relativistic velocity operator (40) and (41) analyzed previously. [ |

Consequently we can arrive to the following.

Remark 4. Conversely, the respective eigenvalues of the relativistic velocity operator are ob-
tained from the null eigenvalue of the (standard) canonical position operator in the momentum
representation.

VL. DISCUSSION

The meaning of the convoluted initial state ¥, (p) can be interpreted as follows: the conjugate
variable to x° (identified with the physical time)

p’=-id° (50)

is no longer well defined because clearly it must be expressed in terms of the remaining variables.
Then, the following identification is immediately performed:

Wy (p) = e (VPPmBr'a), 1)
= ae_i(POﬁ_piai)’ (52)

where P* = V-019' + m? and p’ = —id' at x° = 0, with the consequence that the remaining genera-
tors of the Lorentz group can be determined

MY =i(x'0" - x'97), (53)

MY = —% {x', P}, (54)
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including the fact that x’ and P° not commute. The generators on the initial surface x* = 0 (with
conjugate variable p°) split into kinematical generators M(rotations), p'(momenta), and the
dynamical ones M%(boost) and P’(Hamiltonian) that displaces the system away from the initial
surface. From the algebraic point of view we can check from the definition of the velocity operator

dx® H 6P
= i) = D) O (55)
dt Opa \/pz + m?
1 .
= —EiMO‘, (56)

that is directly related with the boost generator (notice the interplay between the Poisson and quan-
tum structure). As is easy to interpret, if we have into account the spinorial (Clifford) structure of
the double covering of the Lorentz group, namely, the SL (2C), the spin degrees of freedom can be
introduced (besides the orbital part)

MY =i(x/0" - x'87) + 7k SK, (57)
; 1, ; igl/kgi sk
0i _ _ i pOy_ e VY
MY = 2{x,P} I (58)

however, if we also add the space time translations: x* — x* + a*, the Poincare group (as semidi-
rect product of the Lorentz group plus the space-time translations) acts on Hilbert states labeled by
vectors of the form

|p'sm,s,s3), (59)

which are interpreted as physical states (particles) with mass m, spin s, 3-momentum p’, and
magnetic quantum number s3. The positive or negative energy depends on the sign of 8 into the
exponential of ¥, (p). By the way, notice that this fact is connected with the Lagrange multiplier
prescription of Dirac'® where

P°=p°+ A (p*py +m?) (60)

then, eliminating p° through A (e.g., taking P® as Hamiltonian) we have P° = p® = ++/pipi + m?2
corresponding to positive and negative energy solutions.

The familiar interpretation of the eigenvalues of an observable as the only possible values that
can result from measurements of the observable on any state of the system is no longer tenable,
because the expectation value of an observable in a particular state and the average of the eigen-
values of the observable weighted by the absolute square of the amplitude of the corresponding
eigenstate in the state under question are not equal. A simple but telling example is the case of
the operator of the Sakata-Taketani: the velocity operator in the conventional language, has only
zero eigenvalues, yet it is an observable in the sense of pseudo-hermiticity and has a non-vanishing
expectation value in an arbitrary state. As was pointed out before,?” this kind of difficulty connected
with the appearance of the indefinite metric renders the choice between different possible operators
for an observable quantity much more difficult than in the spin 1/2 case.

Vil. MP(n) AND THE ALGEBRAIC INTERPRETATION OF THE SQUARE ROOT OPERATOR

Geometrically, in our early work,' we take as the starting point the action functional that will
describe the world-line of the superparticle (measure on a superspace) as follows:

@

2 _ 2 o © - @
S:/ drL (x,0,0) = —m/ d‘r\/wﬂw”+ae 0o — a0 0, ©1)
71 71

where afy =X, - i(0 o-,,@ -6 o, ), and the dot indicates derivative with respect to the parameter
7, as usual. The above Lagrangian (we will not give the details here) was constructed considering
the line element (e.g., measure, positive square root of the interval) of the non-degenerated super-
metric introduced in Ref. 1 ds? = wrw, +aww, - a*w%w,, where the bosonic term and the Majo-
rana bispinor compose a superspace (1,3|1), with coordinates (¢, x,6%,6%), and where Cartan forms
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of supersymmetry group are described by w, = dx, — i(d0c,0 — 00 ,df), w* = d§?, w* = do*
(obeying evident supertranslational invariance).*” To do this, we take the coordinates x (1), 8 (1),

and " (1) depending on the evolution parameter 7. The Hamiltonian in square root form, namely,

\/ m? = PoPO — (PP + L1IeTl, — LTI9T1,,) [¥) = 0, was constructed defining the supermomenta
as usual and, due to the nullification of this Hamiltonian, the Lanczos method for constrained
Hamiltonian systems was used.

Consequently, we have shown that there exist an algebraic interpretation of the pseudodifferen-
tial operator (square root) in the case of an underlying Mp(n) group structure

1 1_.
\/Wl2 - POPO - (Pﬁm + ;H‘YH(, - EHQHQ) |"P> = O, (62)
{[mz PP - (mﬂ + Loem, - i*H“’Hd)] (\PLQ)} Wb = 0, 63)
a a
B

then, both structures can be identified, e.g., \/mz — PP — (PP + LTTeTT, — L119T1,)
P [m2 — PP — (SDiSDi + éH”H‘, - %H‘ind)]Z(‘I’La) being the state W the square root of a
spinor @ (where the “square root” Hamiltonian acts) such that it can be bilinearly defined as
® =YL,VY. Our goal in these references was based on the observation that the operability of the
pseudodifferential “square root” Hamiltonian can be clearly interpreted if it acts on the square root
of the physical states. In the case of the metaplectic group, the square root of a spinor certainly
exist [Refs. 44, 14, 13, and 15] making this interpretation (62) and (63) fully consistent from the
relativistic and group theoretical viewpoint.

It is interesting to note, that in Ref. 17 the Dirac factorization of the one dimensional relativistic
Schrodinger equation was treated introducing the so called quantum simulation of the Dirac equa-
tion.'® This is, in effect, a toy model apparently capable to simulate a genuine quantum relativistic
effect, as the zitterbewegung. However, the vector ¥ in Ref. 17 is not a spinor and Eq. (37) from
Ref. 17 is not the relativistic counterpart of the Pauli equation: there are not spin degrees of freedom
and relativistic invariance. The construction given there is only a mathematical artifact in order
to mimify the relativistic effects in a sharp contrast with Equation (63) that is fully relativistic and
capable of including a complete (super) multiplet (spanning spins from 0, 1/2, 1, 3/2, 2) of physical
states. In the next paragraph, we will describe these states (truly spinorial and relativistic ones)
obtained from the algebraic correspondence in order to compare them with their respective results
of the quantum simulation of the Dirac equation results presented in Ref. 17.

A. Superspinorial zitterbewegung

Now we will pass to analyze and review the description given in Ref. 29 to see the origin
of the quantum relativistic effects as the zitterbewegung. Concerning to the solutions obtained in
the “algebro-pseudodifferential” correspondence, we must regard that there are two types of states:
the basic (non-observable) ones and observable physical states (see from another point of view the
results of Refs. 1, 2, 34, and 29). The basic states are coherent states corresponding to the double
covering of the SL(2C)* or the metaplectic group'->>** responsible for projecting the symmetries
of the 6 dimensional Mp(4) group space to the 4 dimensional spacetime by means of a bilinear
combination of the M p(4) generators.3>3

Regarding previous works, ' the supermultiplet solution for the geometric Lagrangian was

2
—(2%) 2+ct+c > a
8an(0) = W ()] Lap Iy (1)) = & L) ez <’>Xf<w(0)l(m) W40,
ab
where we have written the corresponding indices for the simplest supermetric state solution being
L, the corresponding generators € Mp (n) in the representation given in Refs. 13 and 44 and y,
coming from the odd generators of the big covering group related to the symmetries of the specific
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model (will not be treated in this paper, and will be left aside). Considering, for simplicity, the

“square” solution for the three compactified dimensions” (spin A fixed, & = — (? - .f”)). We have
obtained schematically for the exponential even fermionic part

ot)=¢, [(aeiwz/z + ﬁe—iwt/Z) _ (O_O)Z (Qeim/z _ ﬁe—iwt/Z)] (64)

L (@), Zp+ () 4 Zaf, (65)

where ¢”’Z"’2ﬁ are constant spinors, and @ and S are C-numbers (the constant ¢; € C due to the
obvious physical reasons and the chirality restoration of the superfield solution [1,2,10]).

By consistency, as in the case of the string, two geometric-physical options will be related
to the orientability of the superspace trajectory:'> o = +8. We have take, without lose generality
a = + 3 then, exactly, there are two possibilities they are as follows:

(i) the compact case (which was given before in Refs. 2 and 1)

(oﬁa cos (wt/2) + EZQ
o =| - 9~ (66)
_¢d sin (a)t/2) - ZZQ

(ii) and the non-compact case

(Zcosh (wt/2) + EZQ
o) =| - ©_ (©7)
_¢a sinh (u)t/Z) - ZZ(,

obviously (in both cases) represents a Majorana fermion where the C (or hypercomplex wherever
the case) symmetry is inside of the constant spinors.
The spinorial even part of the superfield solution in the exponent becomes to

Eo(n) =67 (55(, cos (wt/2) + %za) 5 (—%d sin (wt/2) — %Z—,) (68)

for the C (or hypercomplex wherever the case) symmetry. We easily see that in the above expres-
sion there appear a type of zitterbewegung or continuous oscillation between the chiral and antichi-
ral part of the bispinor o(t). (see, for example, Figures 1-4 in Ref. 29 are snapshots describing the
time evolution of the oscillating effect for suitable values of the parameters of the vacuum solution
and with an increasing wt ~ t/ |a|, respectively (w1 < wy < w3 < - +)).

Remark 5. the physical meaning of such an oscillation (zitterbewegung) is simply an underly-
ing natural supersymmetric effect because there exists a kind of duality between supersymmetrical
and relativistic effects, pointed out previously in Ref. 4.

VIil. PHYSICAL EXAMPLES
A. Rogue waves

As is more or less understandable from their scientific observation at the Draupner oil platform
in the North Sea,’ rogue waves (sometimes described as monster waves, freak waves, or giant
waves) appear with an amplitude extremely larger with respect to the amplitude of the surrounding
wave crests.® Because the conditions that cause the enormous growth of rogue waves are still not
well known, they have become a subject of intense research after their experimental realization and
simulation in various physical systems having an underlying nonlinear character, namely, optical
fibers”# and plasmas.”!?

The general form to attack the problem in many of these contexts is to introduce different vari-
ants of the nonlinear Schrodinger equation (NLSE) due to the modulation of its present instability.'!
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&ab

-10 -5 5 10

FIG. 1. Snapshot describing the evolution of the oscillating effect in complex time.

This kind of modulation can be effectively implemented at laboratory level in the Bose-Einstein
condensation (BEC) scenarios where the Feshbach resonance technique'® allows to control the
dynamics of matter rogue waves by means of the feasibility of tuning interatomic interactions. Also,
in the same context of BEC, the quasi-one dimensional Gross-Pitaevskii (GP) as the NLSE with
trapping potential is usually utilized.

The interesting point is that in recent years the study of spinor condensates has been an impor-
tant issue experimentally and theoretically speaking.?! As is well known, the dynamics of the spinor
condensate is described within the mean-field approximation by the multicomponent GP-equations
containing nontrivial nonlinear terms mimifiying the SU(2) symmetry of the spins. Alkali-metal
atoms are usually represented in a such manner. Now, we can see that rogue waves can be obtained
by the free Schrodinger equation solution in the algebro-pseudodifferential framework given above.
Controlling the parameters of the solution given by expressions (64)-(68), the expected waves are
obtained when the time variable has complex coefficients (e.g., — if). It is clear that it is a kind of
“dispersion in time” that is responsible for the “exploded” wave dynamics. 3-dimensional Figures 5-7
show the wave behavior with an increasing imaginary coefficient in the time variable, respectively.
Figures 1-4 show snapshots describing the evolution of the oscillating effect in complex time.

B. The Nambu-Goto action and the microcanonical propagator

Here we will make some comments about the pseudodifferential operators and physical sys-
tems with finite energy (e.g., microcanonical ensemble) in connection with the quantum field theo-
retical (QFT) viewpoint. Regarding our previous reference (see full details in Ref. 43 and connected
with a string-high energy framework see Ref. 45) the propagator for black-hole/string/particle was
constructed knowing that the Nambu-Goto action is invariant under the reparametrizations. Using
the “Born-Infeld” choice for the dynamical variables,?? we obtain the action in the form

72
S = —5 / 1 Xodo dt \/ [1= @] [1+01xa)’], (@b =23 dixa =&, Pd0xs).  (69)

Therefore, the invariance with respect to the invariance of the coordinate evolution parameter
means that one of the dynamic variables of the theory (xo(7) in this case) becomes the observed
time with the corresponding non-zero Hamiltonian Hg; = I,x" — L = +/a? — TI,I1P, where: T1? =
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FIG. 2. Snapshot describing the evolution of the oscillating effect in complex time.
V1 2 . . . . .
a(gl‘ ,a =~ W?‘x“) . From the simplest path-integral formalism, using quantum field theoretical
0Xp) a

arguments and introducing the integral representation for a pseudodifferential operator®!' (based on
semigroup construction),

1/2

2, 2y A irx 27 |x|

4+ dt = —

/ () T = 10 (Zu

where K, (x) is the MacDonald’s function, we obtain*>*3

o (E)
—k*-m?+ie

172
) Ka-1y2(ulx]), (70)
the following microcanonical propagator:

DE(Z‘,}) = 2

—8riad (w? — k* — m?) Z
1=1

K_i(a|lwg = E|) Q(E - lwy)
E? Q(E)

0(E - lwy), (71)

where 6 (x) is the usual step function. The first term in the microcanonical propagator is the usual
(non-termal) Feynman propagator, the second one is the new microcanonical statistical part. The

&ab
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FIG. 3. Snapshot describing the evolution of the oscillating effect in complex time.
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FIG. 4. Snapshot describing the evolution of the oscillating effect in complex time.

correct description of the full N-extended body system is obtained explicitly expanding the Mac
Donald’s function K_; in the second term of the free microcanonical propagator® leading to a
nonlocal and nonlinear generalization of the well known (string-theoretical) Veneziano amplitude.*”
This observation leads us to highlight the next.

Remark 6. Pseudodifferential operators in QFT give rise to propagators in which a string-like
type of structure emerges (gamma type string-amplitude) contributing to their statistical relation
between temporal and normal ordering of the field operators.

FIG. 5. Wave behavior with an increasing imaginary coefficient in the time variable.
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FIG. 6. Wave behavior with an increasing imaginary coefficient in the time variable.

-2

FIG. 7. Wave behavior with an increasing imaginary coefficient in the time variable.

C. Warped gravities, randall sundrum scenarios, and the square root

The last example coming from our Ref. 2 shows the consistency of this interpretation. The
motivation to introduce pseudodifferential operators was to find the consistent solution to the hier-
archy problem?® and, due to the lack of formal “first principles” explanations, to the field theoretical
localization mechanisms for scalar and fermions® as well as for gauge bosons.*' Some points
coming from the analysis of these previous works? must be highlighted.

The remarkable property of the full solution involving beside the expressions (63)-(67), the

2
_(m ) 2, .
bosonic part namely, gq»(t) = e () rereatée, | (0)2, is that the physical state gqp (x) is local-

ized in a particular position of the space-time: the supermetric C coefficients a (a*) play the impor-
tant role of localizing the fields in the bosonic part of the superspace in a similar and suggestive



063503-15 Diego Julio Cirilo-Lombardo J. Math. Phys. 57, 063503 (2016)

form as the well known “warp factors” in multidimensional gravity*? for a positive (or negative) ten-
sion brane. This Gaussian type solution is a very well defined physical state in a Hilbert space®®*’
from a mathematical point of view, contrarily to the usual case u (y) = ce 1%/ given in Ref. 42
that, although were possible to find a manner to include it in any Hilbert space, is strongly needed
to take special mathematical and physical particular assumptions whose meaning is obscure. For
a more complete picture the comparison with the case of 5-dimensional gravity plus cosmological
constant*? is clearly given with full details in the table of reference.>

IX. CONCLUDING REMARKS

In this work, we have made a development and analysis of the problem generated by the
“square root” operator. Through this paper we logically emphasize the non-locality and the relation
with the Green function approach.

We show that there exists a close relation between the number of spacetime dimensions and the
order of the cylinder functions (MacDonald’s function in our case) having the case of even number
of spacetime dimensions an exact integrability.

The self-reproducing property of the MacDonald’s function, as the main ingredient of the
Green kernel, makes possible the straightforward relation with the coherent and squeezed states of
the non-compact groups (e.g., SU(1, 1)) and the corresponding double coverings as is the metaplec-
tic typical case.** In this sense, we have demonstrated here clearly, through the comparison with
Ref. 46, the relation with the non-Hermitian time operator and, looking at Ref. 47, the relation
with the time-energy coherent states. In this manner we have shown specifically the form of the
“overlap” integrals and the physical operators of the “observables”: velocity and the phase space
structure. The conclusion that is immediately obtained from this last point is that the coherent states
structure is related with the time dispersion of the non-local square root Hamiltonian.*®

The integrability for several dimensions is achieved in the case of even dimensions due to the
symplectic (phase space) underlying structure. All remaining aspects concerning these issues were
clearly treated through the first part of the paper by means of respective theorems, proofs, and
remarks.

The algebraic connection with the pseudodifferential description, described from our previ-
ous works and formally proposed by us here, allows the correct interpretation of the square root
treated as operator that has been exemplified by three physical cases (namely, rogue waves, warped
gravities, and the Nambu-Goto action and the microcanonical propagator). The relativistic wave
equations for any spin are also described by this algebraic interpretation establishing a bridge with
the pseudodifferential and semigroup approaches.

An important new result, in the context of the algebraic approach, that we have found before
is that there exists an oscillatory fermionic effect in the B part of the supermultiplet as a Zitter-
webegung, but between the chiral and antichiral components of this Majorana bispinor. This effect
is (see Equation (67)) fully relativistic and capable of including a complete (super) multiplet of
physical states in a sharp contrast with Ref. 17 where the Dirac factorization of the one dimensional
relativistic Schrodinger equation was treated introducing the so called quantum simulation of the
Dirac equation,'® where the vector ¥ in Ref. 17 is not a spinor and Eq. (37) from Ref. 17 is not the
relativistic counterpart of the Pauli equation: there are no spin degrees of freedom and relativistic
invariance.
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