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We present a study of collisionless magnetic reconnection within the framework of full two-fluid

MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron

pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with

no dissipative effects. We check that the ideal invariants of the problem are conserved down to

round-off errors. Our numerical results confirm that the change in the topology of the magnetic

field lines is exclusively due to the presence of electron inertia. The computed reconnection rates

remain a fair fraction of the Alfv�en velocity, which therefore qualifies as fast reconnection.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890021]

I. INTRODUCTION

Magnetic reconnection is an important physical mecha-

nism of energy conversion in various space plasma physics

environments, such as the solar corona or planetary magneto-

spheres.1,2 This process locally changes the magnetic field

topology, transforming free magnetic energy into kinetic

energy and heating of the plasma. To study the efficiency of

magnetic reconnection, the reconnection rate is considered.

Theoretical models of magnetic reconnection were first

developed within the framework of one-fluid resistive mag-

netohydrodynamics (MHD), the so-called Sweet-Parker

regime.3,4 In the Sweet-Parker model, the reconnection rate

scales as the square root of the magnetic resistivity, which

leads to exceedingly low reconnection rates for most space

physics environments.5–9 A possible solution to this problem

was reported by Petschek,10 giving rise to the concept of fast

reconnection. However, numerical simulations showed that

the classical Petschek model configuration cannot be attained

in a model with a spatially uniform resistivity.11

The idea that MHD turbulence may play an important

role in a magnetic reconnection setup was first proposed by

Matthaeus and Lamkin,12 by adding turbulent fluctuations on

a two-dimensional sheet pinch configuration. For a specific

model for MHD turbulence,13 Lazarian and Vishniac14

reported that the rate of magnetic reconnection is increased

in the presence of a stochastic or turbulent component of the

magnetic field. In their model, the fast reconnection speed is

determined by the level of large-scale kinetic energy feeding

the turbulent cascade, which was confirmed by Kowal

et al.15 using direct numerical simulations. Within the frame-

work of resistive MHD, Bhattacharjee et al.16 showed that

thin current sheets with Lundquist number exceeding a criti-

cal value, are unstable to a super-Alfv�enic tearing instability.

As a result of this instability, the system reaches a nonlinear

reconnection rate which is larger than the Sweet-Parker rate

by an order of magnitude. Recently, Yamada et al.17 reported

an extensive review on magnetic reconnection, discussing

results from theory, numerical simulations, observations

from space satellites, and recent results from laboratory

plasma experiments.

Kinetic plasma effects such as Hall and electron inertia,

introduce new spatial and temporal scales into the theoretical

fluid description. At length scales larger than the so-called ion
skin-depth, these two effects can be neglected. For instance, if

the resistive scale is larger than the ion skin-depth the resistive

MHD model is a valid description for a collisional plasma. On

the other hand, at scales below the ion skin-depth, the Hall-

MHD (HMHD) description is valid. In this scenario, the ions

are no longer frozen-in to the magnetic field lines as a result

of the Hall current term. Meanwhile, the electrons remain

frozen-in to the magnetic field lines. Smith et al.18 examined

the influence of the Hall effect and level of MHD turbulence

on the reconnection rate in 2.5D compressible Hall MHD.

Their results indicate that the reconnection rate is enhanced

both by increasing the Hall parameter and the turbulence am-

plitude. In any of the cases discussed above, a small amount

of magnetic resistivity is necessary to break the frozen-in con-

dition and start the reconnection process.

Biskamp et al.19 reported theoretical studies of collision-

less magnetic reconnection within the framework of

two-fluid theory. In particular, the authors propose that

reconnection is controlled by the whistler mode, leading to

the decoupling of ions from electrons on scales of the order

of the ion skin-depth, where the behavior of the plasma is

approximately described by the equations of electron-MHD

(EMHD). In this approximation, which becomes asymptoti-

cally valid at spatial scales smaller than the ion skin-depth,

ions are considered static (because of their larger mass) and

electrons are the only species to carry the electric current.

More recently, Zocco et al.20 considered the potential rele-

vance of electron viscosity on the reconnection rate, which is

also known as hyper-resistivity, since the effect is repre-

sented by a r4 term in the induction equation. Using scaling

arguments on a steady state configuration, they find that the

hyper-resistive regime can potentially lead to fast reconnec-

tion, even though the length of the electron diffusion region
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might depend explicitly on the level of hyper-resistivity.

Sullivan et al.21 also study the role of hyper-resistivity in the

somewhat more general framework of HMHD performing

two dimensional simulations and confirm the previous

results. Electron viscosity corresponds to a particular closure

on the electron pressure tensor within the fluidistic descrip-

tion. Considering alternative closure approximations on the

electron pressure tensor, Cai and Li22 performed a linear

analysis on the EMHD equations to study the role of

electron-pressure anisotropies on the evolution of the

tearing-mode instability. They find that the relative impor-

tance between electron-pressure and electron inertia effects

during reconnection depends on the ratio between the ther-

mal electron Larmor radius and the electron skin depth.

Hesse et al.23 reported a comprehensive study of anisotropies

of the electron pressure tensor on the reconnection process,

in the cases of either presence or absence of a guide mag-

netic field.

Geospace Environment Modeling (GEM) Reconnection

Challenge24 was a project designed to study collisionless

magnetic reconnection assuming different theoretical

approaches. Using fully electromagnetic particle in cell,25–27

resistive MHD, HMHD,27–30 and hybrid codes,27,31 the

authors studied a simple 2D Harris current sheet configura-

tion with a specified set of initial conditions. They found that

the reconnection rate is insensitive to the mechanism that

breaks the frozen-in condition and corresponds to an inflow

velocity of nearly 10% of the Alfv�en speed. In addition to

these arguments, Shay et al.32 claimed that the reconnection

rate is found to be a universal constant as the system become

very large. However, several studies have demonstrated that

the reconnection rate might still depend on the value of the

Hall parameter18,19,33–35 or on the level of turbulent fluctua-

tions.14,18 Moving beyond the steady-state models, Ottaviani

and Porcelli36 showed that electron inertia can lead to growth

rates faster than exponential in time. This work was made

under the assumption that the nonlocal ion motion can be

neglected. Comisso et al.37 reported results including ion

gyration effects. These authors have shown analytical evi-

dence that the qualitative differences between hot and cold

ion reconnection is linked to the formation of strong electric

fields due to ion gyration effects. Recent particle-in-cell

(PIC) simulations of collisionless magnetic reconnection

studied the effect of both electron inertia and non-gyrotropic

(off-diagonal) pressure tensor effects.38 Using 3D electro-

magnetic PIC simulations, Fujimoto39 confirmed the pres-

ence of a fast reconnection rate. For configurations

displaying translational symmetry along the current sheet, he

also finds that the electrons cross the diffusion region with-

out thermalization, which means that the magnetic dissipa-

tion is dominated by electron inertia (see also Fujimoto and

Sydora40). Using 2D PIC simulations, Zenitani et al.41 found

that the size of the central dissipation region is controlled by

the electron to ion mass ratio, even though the reconnection

rate is largely insensitive to this mass ratio.

In a two-fluid description of a plasma, at least two kinetic

effects are able to break magnetic field lines and give rise to

reconnection: electric resistivity and electron inertia. Al-Salti

and Shivamoggi42 considered the relative importance between

these two effects on externally driven magnetic reconnection.

They find that when the boundaries are perturbed at rates

slower than the hydrodynamic time and faster than the resistive

time, a current sheet as narrow as the electron skin depth forms

which undergoes resistive dissipation at later times. Most if not

all of the fluid descriptions listed above include electric resis-

tivity, at the very least a numerical resistivity originated in the

computational scheme used to calculate the spatial derivatives.

However, in truly collisionless regimes (i.e., where the colli-

sional frequencies remain much smaller than all other relevant

frequencies, such as those corresponding to the cyclotron

motions), magnetic reconnection should be driven solely by

electron inertia. This physical or numerical resistivity is likely

to be the ultimate cause of the reconnection process. In the

present paper, our goal is to study magnetic reconnection

exclusively due to electron inertia, by completely suppressing

the action of electric resistivity. We use a pseudo-spectral

scheme to compute the spatial derivatives, which converges

exponentially fast as the number of grid points is increased. As

a result, we can run simulations with zero resistivity and/or vis-

cosity and check that we are not spuriously adding numerical

resistivity simply by monitoring the energy conservation for

each run. We find that energy is conserved with a precision

consistent with round-off errors. Therefore, we are certain that

reconnection in our simulations arises exclusively as a result of

finite electron inertia and not because of the presence of physi-

cal or numerical resistivity. For spatial scales below of the

electron skin-depth, the terms of electron inertia are dominant,

and the electrons can no longer be frozen-in to the magnetic

field lines.43 Only at this level of description, a change in the

topology of the magnetic field lines exclusively due to electron

inertia (i.e., including the mass of the electron explicitly)

becomes possible. We call Electron Inertia Hall-MHD

(EIHMHD) to a theoretical framework that extends HMHD

and includes the inertia of electrons. This level of description

should not be confused with the EMHD approximation,44 for

which the ion motion is neglected. Instead, we retain the whole

dynamics of both the electron and ion flows throughout all the

relevant spatial scales.

In summary, our main goal in this paper is to study the

magnetic reconnection process, using a full two-fluid model

for a completely ionized hydrogen plasma, retaining the Hall

current and electron inertia. To the extent of our knowledge,

this is the first time such a complete ideal two-fluid model is

presented, considering also a pseudo-spectral method to accu-

rately run simulations with negligible numerical resistivity.

In Sec. II, we develop the EIHMHD model used in the

present paper and present the ideal invariants of the model.

In Sec. III, we show the set of equations that describe the dy-

namical evolution of the problem in a 2.5D setup. The linear

modes of this incompressible model, and the numerical code

used to integrate the equations are described in Sec. IV. In

Sec. V, we present our main results and, finally, in Sec. VI,

we summarize our conclusions.

II. ELECTRON INERTIA HALL-MHD MODEL

The equations of motion for a plasma made of protons

and electrons with mass mp;e, charge 6e, density np ¼ ne ¼

072904-2 Andr�es et al. Phys. Plasmas 21, 072904 (2014)
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no (because of quasi-neutrality), pressure pp;e and velocity

up;e, respectively, in the ideal limit can be written as

mpno
dup

dt
¼ eno Eþ 1

c
up � B

� �
� $pp; (1)

meno
due

dt
¼ �eno Eþ 1

c
ue � B

� �
� $pe; (2)

j ¼ c

4p
$� B ¼ eno up � ueð Þ; (3)

where Eq. (3) corresponds to Ampere’s law neglecting the

displacement current, c is the speed of light and the total de-

rivative is

dup;e

dt
� @up;e

@t
þ up;e � $ð Þup;e: (4)

The conservation of mass for each species implies

@ mp;enoð Þ
@t

þ $ � mp;enoup;eð Þ ¼ 0: (5)

This set of equations can be written in a dimensionless form

in terms of a typical length scale L0, a constant particle den-

sity n0, a value for the magnetic field B0 and a typical value

of velocity u0 ¼ vA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0M
p

(the Alfv�en velocity)

where M � mp þ me,

1� dð Þ dup

dt
¼ 1

e
Eþ up � Bð Þ � $pp; (6)

d
due

dt
¼ � 1

e
Eþ ue � Bð Þ � $pe; (7)

ej ¼ up � ue; (8)

where we have introduced the parameters d � me=M and

e � c=xML0, and xM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n0=M

p
is related to the plasma

proton frequency xpp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n0=mp

p
as xM ¼ xpp

ffiffiffiffiffiffiffiffiffiffiffiffi
mp=M

p
.

It is important to mention that in the limit of electron inertia

equal to zero, we obtain xM ¼ xpp, and therefore e ¼ eH ¼
c=xppL0 which is the usual Hall parameter.

Using the definition of the hydrodynamic velocity field

u � mpup þ meue

mp þ me
¼ 1� dð Þup þ due; (9)

we can readily obtain the relations between the hydrody-

namic variables and the velocity of each species as

up ¼ uþ dej; (10)

ue ¼ u� ð1� dÞej: (11)

The modified Euler equation is the sum of the corresponding

equations of motion (6) and (7),

du

dt
¼ j� B� d 1� dð Þe2r2B

� �
� b$p; (12)

where p � pp þ pe is the hydrodynamic pressure, and b is

the ratio between the gas pressure and the magnetic pressure.

Note that in the limit of negligible electron inertia (i.e., for

d! 0), Eq. (12) reduces to the standard equation of motion

of one-fluid MHD, and this is also the case for the HMHD

description, which is a two-fluid theoretical description, but

considering massless electrons. The equation of motion for

electrons (7), using E ¼ �@tA� $/ and ððue � $ÞueÞ ¼ xe

�ue þ $ðu2
e=2Þ can be cast into

@

@t
A� deueð Þ ¼ ue � B� dexeð Þ

þ$ epe þ de
u2

e

2
� /

� �
: (13)

We define,

B0 � B� dexe ¼ B� ð1� dÞde2r2B� dex; (14)

where x ¼ $� u is the hydrodynamic vorticity. Taking the

curl of Eq. (13), it is possible to obtain a dynamical equation

for the magnetic field

@t B0 ¼ $� f½u� ð1� dÞej� � B0g: (15)

Again, it is straightforward to verify that for d! 0, Eq. (15)

reduces to the induction equation for HMHD.

Just as for three-dimensional Hall-MHD, the Electron

Inertia Hall-MHD model has three ideal invariants. Using

E ¼ � 1
c @tA� $/, we can readily show that the total energy

E is one of these ideal invariants, where

E ¼
ð

d3r
X

s

msns
u2

s

2
þ B2

8p

 !
: (16)

The other two ideal invariants are one helicity per species,

i.e.

Hs ¼
ð

d3r Aþ cms

qs
us

� �
� Bþ cms

qs
xs

� �
; (17)

where xs ¼ $� us and in this case s ¼ p; e. It is worth to

mention that in the Hall-MHD limit, i.e., d! 0, the conser-

vation of the ion helicity and electron helicity corresponds to

the conservation of the hybrid helicity and magnetic helicity,

respectively.45

III. 2.5D SETUP

In a 2.5D setup, the vector fields depend on two coordi-

nates, say x and y, although they have three components.

Considering the incompressible case, i.e., r � u ¼ 0, we can

write the magnetic and velocity fields as

B ¼ $� ½ẑ aðx; y; tÞ� þ ẑ bðx; y; tÞ; (18)

u ¼ $� ½ẑ uðx; y; tÞ� þ ẑ uðx; y; tÞ; (19)

where aðx; y; tÞ and uðx; y; tÞ are the scalar potential for the

magnetic and velocity fields, respectively. In terms of these

scalar potentials, Eqs. (12) and (15) take the form

@t x ¼ ½u;x� � ½a; j� � ð1� dÞde2½b;r2b�; (20)

@t u ¼ ½u; u� � ½a; b� � ð1� dÞde2½j; b�; (21)
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@t a0 ¼ ½u� ð1� dÞeb; a0�; (22)

@t b0 ¼ ½u� ð1� dÞeb; b0� þ ½u� ð1� dÞej; a0�; (23)

where

x ¼ �r2u; (24)

j ¼ �r2a; (25)

a0 ¼ aþ ð1� dÞde2j� deu; (26)

b0 ¼ b� ð1� dÞde2r2b� dex; (27)

and the nonlinear terms are the standard Poisson brackets,

i.e., ½p; q� ¼ @xp@yq� @yp@xq. The set of Eqs. (20)–(23)

describe the dynamical evolution of the magnetic and veloc-

ity fields for the reconnection problem. When d ¼ 0 (mass-

less electrons) this set of equations reduces to the

incompressible 2.5D HMHD equations.45

IV. IDEAL INVARIANTS AND LINEAR MODES

Linearising equations (20)–(23) around a static equilib-

rium given by a homogeneous magnetic field of intensity B0

in the x-y plane, we obtain the following dispersion

relationship:

fr2½1þ ð1� dÞde2k2� � k2 cos2ðhkBÞg
2 ¼ r2e2k2ð2d� 1Þ;

(28)

where hkB is the angle between the propagation vector and

the equilibrium magnetic field and r is the temporal fre-

quency. The solution of Eq. (28) yields the normal modes of

oscillation of Eqs. (20)–(23).

Figure 1 shows the two modes of propagation of waves

in EIHMHD, for a realistic mass ratio of me=mp ¼ 1=1836,

hkB ¼ 0 and eH ¼ 0:1. The dotted line corresponds to the

MHD Alfv�en mode, for reference. As in HMHD45 the

bottom branch represents the shear ion-cyclotron waves,

which converges to the proton cyclotron frequency

(xcp ¼ eB0=mpc). The top branch corresponds to the whis-

tler branch and, in contrast to HMHD, it reaches a maximum

given by the electron cyclotron frequency (xce ¼ eB0=mec).

The fact that both linear modes have upper boundaries for

their frequencies represents an advantage from the numerical

point of view, with respect to the unbounded dispersion rela-

tion in HMHD. The maximum frequency in EIHMHD (cor-

responding to xce) is suggestive of the existence of a

minimum time-step in the numerical integration scheme

which is independent of the spatial resolution

Dt� 1=xmax ¼ 2=xce. Instead, in HMHD, the whistler

branch implies a k-dependent maximum frequency xmax �
k2

max and therefore the minimum time-step in the numerical

integration scheme (CFL condition46) depends quadratically

on the spatial resolution, Dt ¼ 1=xmax � 1=k2
max � Dx2. As a

result, HMHD is computationally more demanding as the

spatial resolution is increased, as compared with the more

complete EIHMHD model.

In a 2.5D setup, the dimensionless expressions for the

three ideal invariants are

E ¼ 1

2

ð
d2r½j$uj2 þ u2 þ j$aj2 þ b2

þ 1� dð Þde2j$bj2 þ 1� dð Þde2j2�; (29)

Hp ¼
ð

d2rfabþ ðð1� dÞeÞ½ðuþ de jÞbþ aðx� der2bÞ�

þðð1� dÞeÞ2½ðuþ de jÞðx� der2bÞ�g; (30)

He¼
ð

d2rfab�ðdeÞ½ðu�ð1�dÞe jÞbþaðxþð1�dÞer2bÞ�

þðdeÞ2½ðu�ð1�dÞe jÞðxþð1�dÞer2bÞ�g: (31)

In the present paper, we performed 2.5D EIHMHD sim-

ulations using a pseudo-spectral code, which yields exponen-

tially fast numerical convergence and negligible numerical

dissipation. The accuracy of the numerical scheme can be

verified in part by looking at the behavior of the ideal invari-

ants of the EIHMHD equations in time. The simulations

reported here correspond to zero viscosity and resistivity,

and the total energy is conserved by the numerical scheme

with an error DE=E of less than 10�8. The ion and electron

helicities were initially zero, and throughout their evolution

differ from zero in less than 10�15. It is clear that numerical

dissipation is reduced to round-off errors only.

V. RESULTS

A. Initial conditions

Our initial condition to simulate a thin current sheets is

given by (assuming periodic boundary conditions in a 2p�
2p box)

B x; y; t ¼ 0ð Þ ¼ B0 tanh
y� 3p

2

2pD

� �
� tanh

y� p
2

2pD

� �
þ 1

" #
x̂;

(32)

FIG. 1. Linear propagation modes in EIHMHD model for a realistic mass ra-

tio, hkB ¼ 0 and eH ¼ 0:1. The dotted line corresponds to the MHD Alfv�en

mode, for reference.
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where, in normalized units, we have B0 ¼ 1 and D ¼ 0:02.

To drive reconnection, a monochromatic perturbation dB ¼
$� ½ẑ daðx; yÞ� with daðx; yÞ ¼ a0 cosðkxxÞ, kx ¼ 1 and an

amplitude of a0 ¼ 0:02B0 is added to the initial condition

(32). We perform numerical simulations starting with a mod-

erate spatial resolution of 5122 grid points, followed by pro-

gressively higher spatial resolutions of 10242, 15362, and

20482 grid points. For all these cases, we use a Hall parame-

ter eH ¼ 0:1 and a value of mass ratio me=mp ¼ 0:015, which

corresponds to approximately 27 times the real electron

mass. In addition, we made 3 runs with high spatial resolu-

tion (10242, 15362, and 20482 grid points) and a realistic

ratio of electron to proton mass, i.e., me=mp ¼ 1=1836.

In Figure 2, we show the set up of magnetic reconnec-

tion for a run of 10242 grid points. Contours levels of mag-

netic flux aðx; yÞ are in white lines, superimposed to the

electric current density component along the z direction,

jðx; yÞ, at time t¼ 0.6 (in grayscale). The panel above shows

a EIHMHD run with eH ¼ 0:1 and me=mp ¼ 0:015, while the

panel below shows a HMHD run with eH ¼ 0:1 and

me=mp ¼ 0. The brightest regions correspond to the current

sheets. We only show half a box of integration for each case,

of size 2p� p.

B. Topological change and spatial resolution

As discussed in Sec. I, magnetic reconnection is a local

change in the magnetic field topology. One of the conse-

quences of this topological change is a transfer of free mag-

netic energy into kinetic energy of the plasma. In a fluid

description, where resistivity and viscosity are set equal to

zero, we expect that the break of the frozen-in condition is

due to the presence of electron inertia. Therefore, we study

the generation of magnetic reconnection in the following

three models: MHD, HMHD, and EIHMHD, expecting that

the only framework where reconnection is possible is

EIHMHD.

To quantitatively measure the efficiency of the magnetic

reconnection process, the reconnection rate r(t) is defined,

which is the rate at which magnetic flux flows into the cen-

tral neutral point (the X-point). Near the neutral point, mag-

netic flux enters due to a relatively slow plasma inflow and is

expelled out at speeds of the order of the Alfv�en speed.

Figure 3 shows the vertical surface used to integrate the mag-

netic flux /ðtÞ ¼
Ð

dS � B that extends from the O-point of

one of the current sheets (shown in black, corresponding to

negative values of jðx; yÞ), to the X-point of the other (shown

in white). Both the O-point and the X-point are stagnation

points of the flow.

Using Eq. (18), it is straightforward to show that

/ðtÞ ¼
ð

dS � B ¼ amax � amin: (33)

The reconnection rate r(t) is the variation of this magnetic

flux per unit time, i.e., rðtÞ ¼ d/ðtÞ=dt.
To test the accuracy of our results, we focused our atten-

tion on the spatial resolution of our simulations. For this pur-

pose, we made different runs for several spatial resolutions,

starting from the same initial condition as the one discussed

in Sec. IV. More specifically, we performed 2.5D runs with

the following numbers of grid points: 5122, 10242, 15362,

and 20482. For each spatial resolution, we calculated the

reconnected flux as shown in Figure 4. As expected, for the

ideal MHD and HMHD, the curve for the reconnected flux

converges to zero as the spatial resolution is increased (line

color scale is obscured). Therefore, as the number of grid

points increases, the reconnection rate approaches zero, both

in the MHD and HMHD cases. In the case of EIHMHD,

since we expect the electrons to break the frozen-in condi-

tion, the reconnected flux converges to a value different from

zero, as the number of grid points increases. Therefore, we

claim that considering electron inertia is a necessary physical

ingredient to start the reconnection process. Note that in our

pseudo-spectral scheme, numerical dissipation is essentially

zero (within round-off errors), as becomes apparent from the

FIG. 2. The images (in grayscale) show the spatial distribution of current

density jðx; yÞ at t¼ 0.6 for eH ¼ 0:1 and me=mp ¼ 0:015 (above) and

me=mp ¼ 0 (below), for the lower half of the integration box (see Figure 3).

Contours of aðx; yÞ are superimposed (white lines).

FIG. 3. Schematic configuration for the calculation of the reconnection rate.

The horizontal plane shows the distribution of jðx; yÞ for the full box, con-

tour levels of aðx; yÞ are superimposed.

072904-5 Andr�es et al. Phys. Plasmas 21, 072904 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

157.92.4.75 On: Tue, 15 Jul 2014 14:20:00



high degree of numerical conservation of the three ideal

invariants (see also Brachet et al.47).

C. Magnetic reconnected flux and rate

Within the framework of EIHMHD, we study the colli-

sionless magnetic reconnection problem considering eH ¼
0:1 and a realistic value of the electron mass

(me=mp ¼ 1=1836). Using the same initial conditions

described in Sec. V A, we performed simulations with rela-

tively high spatial resolution (10242, 15362, and 20482).

Figure 5 shows the reconnected flux and reconnection rate,

for each spatial resolution, as a function of time. The recon-

nection rate r(t) is calculated using second order finite central

differences from the time series of the flux /ðtÞ. As

expected, we obtain essentially the same curve for the three

spatial resolutions in agreement with the results shown in

Figure 4. In particular, we get a maximum reconnection rate

reaching values close to 0.1, which corresponds to inflow

velocities approaching a fraction of the Alfv�en speed. This

result is consistent with those reported in the literature, in

particular with PIC simulation results39,41 and the GEM

Challenge.24 In particular, using a partially implicit PIC

code, Zenitani et al.41 found a reconnection rate approaching

0:1vA. It is worth mentioning that we obtained a reconnection

rate comparable to the one reported by Birn et al.,24 because

we used a similar set of initial conditions and parameter val-

ues. Nevertheless, the reconnection rate is expected to

depend on the Hall parameter18,19,33–35 as well as on the am-

plitude of fluctuations dB,18 even though a systematic study

of the reconnection rate as a function of these parameters is

beyond the scope of the present study.

Finally, we compared the reconnected flux and recon-

nection rate for the same initial conditions and different elec-

tron to proton mass ratios. In particular, we compared the

results for me=mp ¼ 0:015 and me=mp ¼ 1=1836. We obtain

the same trend for both the reconnected flux and reconnec-

tion rate. In agreement with PIC simulations41 and resistive

HMHD simulations,24 we find that the reconnection rate is

insensitive to the electron to proton mass ratio.

VI. CONCLUSIONS

We presented a fully two-fluid model for a completely

ionized hydrogen plasma, retaining the Hall current and elec-

tron inertia. In the incompressible limit, we verified the exis-

tence of the linear modes of the model, i.e., the ion-cyclotron

and the whistler branches. As showed, these two branches

converge to the proton and electron cyclotron frequencies in

the wavenumber k !1 limit. Numerically, we confirm the

conservation of the three ideal invariants of the model with a

high degree of accuracy of �10�8 � 10�12. It is worth men-

tioning that in the limit of zero electron inertia (i.e., me ! 0)

we recover the HMHD model, with their corresponding lin-

ear modes and ideal invariants.45

Our results show that we are able to obtain magnetic

reconnection, only when the effects of electron inertia are

FIG. 4. Reconnected flux versus time. Each panel corresponds to a different

case, as labelled. Different spatial resolutions: 5122, 10242, 15362, and

20482 correspond to progressively darker traces.

FIG. 5. Reconnected flux and reconnection rate as a function of time for

10242 (light gray line), 15362 (dark gray line), and 20482 (black line) grid

points. The three runs correspond to eH ¼ 0:1 and a realistic mass ratio

(me=mp ¼ 1=1836).
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retained, since our scheme is free from physical or numerical

resistivity. Even though the fact that electron inertia enables

magnetic reconnection is well known, to the extent of our

knowledge this is the first time that this feature is confirmed

with results from a non-dissipative fluid simulation. In par-

ticular, for the case of ideal MHD and HMHD, we show that

it is not possible to have magnetic reconnection without dis-

sipation effects. In other words, we find that within the

framework of the present model, finite electron inertia is a

necessary physical ingredient to drive the reconnection pro-

cess, even though the reconnection rate is largely independ-

ent of the numerical value of the mass ratio me=mp.

Moreover, for high spatial resolution simulations, we find a

reconnection rate that is quantitatively compatible with the

one found by Birn et al.,24 when we use parameter values

and initial conditions similar to theirs. Note, however, that

the reconnection rate might still depend on the value of the

Hall parameter eH or on the level of fluctuations dB.
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