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Abstract. Afforestation, the conversion of unforested lands to forests, is a tool for
sequestering anthropogenic carbon dioxide into plant biomass. However, in addition to
altering biomass, afforestation can have substantial effects on soil organic carbon (SOC) pools,
some of which have much longer turnover times than plant biomass. An increasing body of
evidence suggests that the effect of afforestation on SOC may depend on mean annual
precipitation (MAP). The goal of this study was to test how labile and bulk pools of SOC and
total soil nitrogen (TN) change with afforestation across a rainfall gradient of 600–1500 mm in
the Rio de la Plata grasslands of Argentina and Uruguay. The sites were all former grasslands
planted with Eucalyptus spp. Overall, we found that afforestation increased (up to 1012 kg
C�ha�1�yr�1) or decreased (as much as 1294 kg C�ha�1�yr�1) SOC pools in this region and that
these changes were significantly related to MAP. Drier sites gained, and wetter sites lost, SOC
and TN (r2¼0.59, P¼0.003; and r2¼0.57,P¼0.004, respectively). Labile C andN in microbial
biomass and extractable soil pools followed similar patterns to bulk SOC and TN.
Interestingly, drier sites gained more SOC and TN as plantations aged, while losses reversed
as plantations aged in wet sites, suggesting that plantation age in addition to precipitation is a
critical driver of changes in soil organic matter with afforestation. This new evidence implies
that longer intervals between harvests for plantations could improve SOC storage, ameliorating
the negative trends found in humid sites. Our results suggest that the value of afforestation as a
carbon sequestration tool should be considered in the context of precipitation and age of the
forest stand.
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INTRODUCTION

Afforestation, the conversion of treeless areas to

forests, is a land use change that can sequester carbon

dioxide through accumulation of plant biomass (Vitou-

sek 1991, Houghton et al. 1999, Wright et al. 2000,

Hoffert et al. 2002, Jackson et al. 2002, Jackson and

Schlesinger 2004). Globally, cultivars of evergreen

species, such as Eucalyptus spp. and Pinus spp., with

very high productivity relative to native trees, are the

most frequently planted (Florence 1996, FAO 2006b).

Currently, .140 Mha in total have been afforested on

every continent except Antarctica, with 2.5 Mha

afforested per year from 2000 through 2005 (FAO

2006a). The rapid expansion of plantation area high-

lights the need to study soil organic carbon (SOC) and

soil nitrogen (TN) in these systems to understand the

potential for long-term nutrient availability, sustainable

productivity, and long-term carbon dioxide sequestra-

tion.

Forest plantations are usually harvested frequently,

which, coupled with their high productivity, can deplete

soil nutrients and alter soil chemistry and hydrology

(Adams et al. 2001, Guo and Gifford 2002, Engel et al.

2005, Berthrong et al. 2009a, Wei et al. 2009). A global

meta-analysis of the effect of afforestation on grassland

soil properties showed that exchangeable cations (Ca,

Mg, K) and N were lower in plantations than in adjacent

native vegetation (Farley et al. 2008, Berthrong et al.

2009a). Additionally, soils have frequently been shown

to be more saline and acidic with afforestation (Williams

et al. 1977, Alfredsson et al. 1998, Lilienfein et al. 2000,

Jobbágy and Jackson 2004a, Nosetto et al. 2007, Farley

et al. 2008). Afforestation of grasslands in our study

system leads to lower stream flow and lower water tables

(Jobbágy and Jackson 2004a, Farley et al. 2005,
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Jobbágy and Jackson 2007, Farley et al. 2008). It has

been shown for other regions that these soil alterations
could lead to lower production in subsequent plantation

rotations, though it is not clear if this result would hold
true in the mesic grasslands of our study area (Zhang et

al. 2004, Bi et al. 2007).
Interestingly, the direction and magnitude of afforesta-

tion’s effect onSOCmaydependonplantationageormean
annual precipitation (MAP). For instance, a global meta-
analysis showed that plantations converted from pastures

with .1200 mmMAP showed significant losses of soil C,
while those at sites with ,1200 mm MAP showed no

changeor slight gains inSOC(GuoandGifford2002).This
effect was also found in grasslands undergoing woody

plant encroachment in the southwest USA, where shrub-
invaded former grasslands showed SOC losses above a

MAP threshold of ;600 mm (Jackson et al. 2002). Age
effects were found in afforested grasslands and pastures

that lost SOC for 10 years after planting, but recovered
SOC levels within 20–30 years (Davis and Condron 2002,

Paul et al. 2002, de Koning et al. 2003). Plantation age in
Ecuadorian grasslands had a similar effect on surface TN,

with losses in TN observed in young plantations but
gradual recovery observed after 15–20 years, although TN

in soil layers deeper than 10 cm showed continued losses
even 25 years after planting (Farley and Kelly 2004).

Smaller labile pools of SOC and TN in soil are also
known to change with conversion to plantations and can

display a faster response than total soil C and N.
Afforestation of grasslands and croplands has led to larger
proportional changes in labile pools, such as extractable

and microbial C and N, than in total soil C and N pools
(O’Connell et al. 2003,Macdonald et al. 2009). Changes in

labile soil pools could have important implications for soil
nutrient supply since these pools are good indicators of

plant-available nutrients (Carter et al. 1999). The larger
differences due to afforestation in labile pools may also

indicate the futuremagnitude and direction of responses of
larger total soil organic matter pools.

This study examined the effects of afforestation on
pools of soil C and N across a gradient of sites varying

in plantation age and annual precipitation within the
temperate grasslands of southern South America. In

particular, we studied how the relative distribution and
amounts of SOC and TN differed between adjacent

pairs of Eucalyptus plantations and native grassland
vegetation and if those differences were related to

precipitation or plantation age. We examined bulk
amounts of SOC and TN, as well as their stoichiometric
ratios. We also measured labile pools of SOC and TN,

since these pools cycle more rapidly and should show a
greater proportional response through time to changes

in chemistry due to afforestation than bulk pools.

METHODS

Site description

The Rio de la Plata grasslands were treeless before

European settlement, with the exception of a few

riparian species (Soriano et al. 1991). The area today

has extensive regions of agriculture and pasture and,

increasingly, plantations (Soriano et al. 1991). In

Uruguay, nearly all plantations are established on

grasslands, and in Argentina roughly half are estab-

lished on grasslands (Baldi et al. 2008, Tommasino

2010). Mean annual precipitation (MAP) in this region

ranges from ;650 mm in the center of Argentina to 1600

mm in Uruguay and southern Brazil (New et al. 2002).

This region has plantations that extend from dry areas,

where precipitation limits growth for both plantation

and grasslands, to wetter areas where precipitation

greatly exceeds plant water needs (Nosetto et al. 2008).

Small-scale afforestation has been common in the Rio

de la Plata grasslands for at least 100 years. Historically,

Eucalyptus plantations in this region were established

for wind shelter, wood lots, or shade, but more recently,

commercial afforestation for multiple wood products

has become common (Soriano et al. 1991, Geary 2001,

Cubbage et al. 2006). Eucalyptus species in this region

have been resistant to droughts and pests, displaying

some of the highest growth rates documented in tree

plantations (Pryor 1976, Florence 1996, FAO 2006b).

The combination of growth in plantation area, high

productivity, and more recently, accessible pulp mills, is

making the Rio de la Plata grasslands an attractive and

rapidly expanding region for forest product companies

(Cubbage et al. 2006).

We identified 16 upland sites in the Rio de la Plata

basin along a precipitation gradient where native

grasslands and Eucalyptus spp. plantations occur

directly adjacent to each other (Fig. 1; Appendix: Table

A1). The plantation–grassland pairs were studied along

a precipitation gradient from 650 mm MAP and 158C

mean annual temperature (MAT) in La Pampa province

of Argentina to 1450 mm MAP and 18.58C MAT in the

Rivera department of Uruguay (FAO 1985, New et al.

2002). All grasslands were actively being grazed at the

time of our sampling. There were several species of

Eucalyptus planted across the sites (E. globulus, E.

grandis, E. camaldulensis; Appendix: Table A1), each in

the subgenus Symphomyrtus, with similar physiological

and chemical profiles (Florence 1996). The Eucalyptus

plantations we studied were initial plantings (i.e., first

rotations) and ranged from 10 to 49 years of age.

Sampling and analytical methods

Soils were sampled in October and November of 2006.

For each grassland, we collected five cores each along

two replicate 10-m transects using a 1.9-cm corer from

0–10 cm and 10–20 cm depths of mineral soil. Transects

were located 10–20 m from the edge of the paired

adjacent plantation to avoid edge effects, but also to

keep other soil factors similar to the plantation soils. We

then repeated the process with two replicate 10-m

transects of five cores each 10–20 m within the

plantation. In order to reduce the effect of fine-scale

soil heterogeneity, the soil cores within each replicate

January 2012 77SOIL C AND N IN GRASSLAND AFFORESTATION



transect were composited in a polyethylene bag and

stored on ice for transport to the laboratory, producing

two replicate composite samples per land use type (four

total per grassland–plantation paired site). We calculat-

ed soil bulk density for each composite transect sample

of five cores using the total volume of the composited

cores and the total mass of soil (corrected for oven-dried

mass), and used it to scale results to g/m2 (Culley 1993).

Soil samples were homogenized and sieved (2-mm mesh)

to remove large roots and rocks. A subsample was dried

at 1108C to determine gravimetric water content. A litter

sample was collected at each site adjacent to the core

locations. There were no significant differences between

vegetation types in soil bulk density, thus corrections to

constant mass were not necessary (Davidson and

Ackerman 1993). Initial carbon content of the grass-

lands varied, but there was also no significant relation-

ship between soil or litter C and N pools and

precipitation.

Soil total extractable C and N and microbial biomass

C and N were determined as in Berthrong and Finzi

(2006). Briefly, for each sample, two 10-g subsamples of

field-moist soil were weighed into centrifuge tubes. The

initial sample was extracted immediately with 30 mL of

0.5 mol/L K2SO4 and shaken for 1 h at 120 oscillations

per minute. The sample was then centrifuged (50003

gravities) and filtered through a Whatman number 1

filter paper. For the second sample, we placed a cotton

ball in the tube and added 2 mL of N-free chloroform

and sealed and incubated the samples in the dark for 5 d.

The chloroform cotton balls were then removed, and the

samples were allowed to ventilate in a fume hood for 1 h,

after which they were extracted in the same manner as

the first samples. Total C and N in the extracts were

measured by combustion and gas analysis on a

Shimadzu TOC-V with a TNM-1 module (Shimadzu

Corporation, Kyoto, Japan). Total extractable C and N

were determined from the initial samples, and microbial

biomass was calculated as the difference in extractable C

or N between fumigated and initial samples.

Total SOC and TN were determined on subsamples of

soil after air-drying to a constant mass with a subsample

oven dried at 1058C to determine gravimetric soil

moisture content. Soils were ground finely with a ball

mill, and total C and N were determined by combustion

in a Carlo-Erba Elemental Analyzer (CE Elantech,

Lakewood, New Jersey, USA). Application of 1 mL of 1

mol/L HCl to a small amount of soil showed no

evidence of soil carbonates; this fact, plus the shallow

sampling depth and neutral-to-acid pH of the soil,

allowed us to consider total soil C to be equal to total

organic C (Appendix: Table A1). Soil pH was measured

by combining 2 g of air-dried soil with 5 mL of 0.01 mol/

L CaCl2. The slurry was swirled gently by hand and

allowed to settle for 30 min. A potentiometric electrode

was then used to measure the pH of the supernatant.

Statistical analysis

We measured the effect size of afforestation on

biogeochemical pools as response ratios, r ¼ XE :XC,

where XE is the mean value for a site of a given soil

variable under Eucalyptus and XC is the mean value of

FIG. 1. Map of sites of adjacent pairs. Boundaries indicate the borders of provinces (Argentina) or departments (Uruguay). The
inset shows the position of the study region in South America. Letters refer to site names: 7H, 7 Hermanos; AN, Anise 1; A2, Anise
2; AL, Almacén; BR, Barrios; CA, Castelli; CF, Confuso; DL, Don Luis; KM, Kilometer 55; LB, Laboulaye; LV, Levalle; PD,
Piedritas; PR, Peron; RU, Ruta 36; SP, San Pedro; and SR, Santa Rosa. See Methods: Site descriptions for site descriptions.
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the same site’s paired control grassland (Gurevitch and

Hedges 2001, Guo and Gifford 2002, Ainsworth and

Long 2005). Given that each grassland and plantation

pair was directly adjacent, this approach allowed us to

compensate for any background differences in soils

across the gradient by expressing the results relative to

site-specific paired controls. To match the scale of pH

(logarithmic) to the linear scales of the other biogeo-

chemical pools, we converted pH to hydrogen ion

concentration values (10�pH) to calculate response

ratios. However, we discuss the hydrogen ion differences

as pH values for ease of interpretation. The response

ratio was then transformed by the natural logarithm to

make the values linear, so that an increase in a variable

due to afforestation would be proportional and on the

same scale as a decrease.

We used stepwise regression by the method of least

squares in SAS (SAS Institute 2008) to test if MAP,

MAT, or plantation age were significant predictors for

the effect of afforestation on biogeochemical pools. F

tests were calculated for MAP, MAT, and plantation

age, and were added to the overall model if the P value

was less than the standard P value for stepwise

regression inclusion. However, if after adding another

predictor the previously added predictor’s P value rose

above 0.15, controlling for other predictors in the model,

then it was removed from the overall model.

Plantation age and MAP were weakly collinear (r ¼
0.44, P , 0.05, variance inflation factor ¼ 1.24). This

collinearity can inflate the amount of variance the model

explains and distort regression parameters if both

predictors are included in the regression model. To

compensate for the collinear predictors, we used ridge

regression in SAS (Hoerl and Kennard 1970, 2000). This

process calculates ridge coefficients that minimize the

variance inflation factor due to collinear predictors, and

then recalculates regression parameters. The ridge-

corrected parameter estimates have a higher root mean

square error for the model, but are generally better

approximations of the true relationship between depen-

dent and independent variables. Ridge regression does

not alter the underlying ability of multiple regression to

predict relationships between variables while controlling

for covariates.

If MAP, MAT, and plantation age were not a

significant predictor of the effect of afforestation for a

given soil variable, we then tested if afforestation had a

significant effect on that soil variable across all sites by

using ANOVA in SAS (proc GLM; SAS Institute 2008).

We blocked paired analyses by site to better represent

the paired nature of the sites. We used Tukey’s hsd for

post hoc comparisons of means across vegetation type.

RESULTS

Changes in soil organic carbon (SOC) with affores-

tation were negatively related to mean annual precipi-

tation, but positively correlated with plantation age (P

, 0.05 for each; Fig. 2, Table 1). Afforested sites with

lower MAP generally gained SOC, whereas sites with

higher MAP generally lost SOC (Fig. 2). Plantations

also tended to lose carbon compared to grasslands until

;24 years of age (95% CI ¼ 21.1–27.7 yr), after which

they tended to gain increasing amounts of SOC (Fig. 2).

In the upper 10 cm of soil, the effect of afforestation on

soil carbon changed from a gain to a loss at ;1150 mm/

yr (95% CI ¼ 1093–1189 mm/yr; Fig. 2). In contrast to

results for the top 10 cm of soil, soils at 10–20 cm depth

showed no relationship between MAP and the effect of

afforestation on C pools (Fig. 2, Table 1). MAT was not

a significant predictor of changes in SOC when

controlling for MAP and plantation age.

Changes in total soil N and total extractable C and N

mirrored those of SOC with afforestation (Figs. 2 and 3,

Table 2). Wetter sites generally lost TN and drier sites

gained TN, with gains increasing as plantations aged

(Fig. 3, Table 2). However, the slope of the relationship

between total soil N and MAP was a less steep (slope¼
�0.0079; Table 2) than that of total SOC and MAP

(slope ¼ �0.0095; Table 1), albeit not significantly so

(95% CI of slope for SOC¼�0.022 to�0.0005 and TN

¼�0.018 to�0.00094). The general increase in soil C:N

also suggests that SOC or soil C:N responded more to

differences in MAP than soil N did (Figs. 2–4, Tables 3

and 4). The transition points between gains and losses

with afforestation in TN were 1050 mm/yr (95% CI ¼
956–1145 mm/yr) and 26 years (95% CI¼ 20.9–30.9 yr;

Figs. 1 and 2). The transition point for extractable N

(1110 mm/yr, 95% CI ¼ 1003–1224 mm/yr) was higher

than that for TN, though the difference was not

significant (CIs overlapping). Microbial biomass C

was not significantly associated with plantation age,

and MAT was not a significant predictor of any of the

above variables when controlling for MAP and

plantation age.

Tissue chemistry differed significantly in the transition

from grasslands to plantations, with Eucalyptus litter

having higher carbon concentrations. Eucalyptus litter

averaged 50.1% 6 0.37% C (mean 6 SE) compared to

40.8% 6 0.83% C for native grasses (P , 0.001;

Appendix: Table A1). Litter N was not significantly

different for Eucalyptus (1.21% 6 0.14% N) and grasses

(1.20% 6 0.15% N; Appendix: Table A1). Litter C to N

ratios for Eucalyptus averaged 52.2 6 5.85, which was

higher than grass litter at 38.5 6 3.43), though not

significantly so (Appendix: Table A1). Litter total C and

N concentrations showed no relationship to precipita-

tion, MAT, or plantation age.

The effect of afforestation on some labile and quickly

cycling C and N pools was not associated with either

MAP or plantation age, but differed significantly across

all sites (Tables 4, 5). Microbial biomass N was 28%
lower at 0–10 cm and 43% lower at 10–20 cm in

Eucalypt sites than in adjacent grasslands (P , 0.01;

Table 4). Microbial biomass C was 26% lower at 10–20

cm soil depth (P , 0.01; Table 4). The average effect on

microbial biomass C was similar at 0–10 cm to that of
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10–20 cm, but at 0–10 cm microbial biomass C was

significantly related to MAP (Fig. 2). Soil pH decreased

by 0.2 and 0.3 units with afforestation (P , 0.05; Table

5).

Soil C:N ratios were usually higher in plantations

than grasslands, but the difference among land uses

decreased with increasing MAP (Table 5, Fig. 4).

Therefore, in wet areas afforestation did not substan-

tially change C:N ratios of microbial biomass, total soil

C:N, or extractable organic matter. Conversely, above-

ground litter C:N ratios were always higher in Eucalyp-

tus plantations and showed no evidence of changing

across the precipitation gradient (Table 5).

DISCUSSION

To understand its full value as a tool for carbon

sequestration, afforestation of grasslands should be

considered in the context of its effects on soil properties

(Vitousek 1991, Jackson et al. 2005, Nosetto et al. 2008).

While previous studies have examined or modeled the

effect of afforestation on soil organic carbon (SOC)

along gradients of precipitation or plantation age (Guo

and Gifford 2002, Halliday et al. 2003, Jackson et al.

2005), this study has combined both variables across a

network of afforestation–grassland pairs. We examined

bulk and labile pools of carbon and nitrogen and found

FIG. 2. Association of soil carbon pools with mean annual precipitation (MAP) and plantation age. The y-axis gives the ln-
transformed response ratio, ln(value for Eucalyptus : value for grassland); positive values indicate an increase in the pool due to
afforestation, and negative values indicate a decrease. Regressions were conducted separately for different soil depths, and only
significant regression models are displayed. Regression parameter estimates are listed in Table 1.
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that the shifts in SOC, TN, and C:N imposed by tree

plantations varied with MAP and plantation age. Our

results suggest similar patterns of gains and losses of

SOC and TN depending on MAP and plantation age,

but also some variation in how tightly SOC and N were

stoichiometrically coupled in response to vegetation

change under different environmental conditions.

SOC responds differently to afforestation for different

precipitation levels, a response that a recent modeling

study suggests is tied to alterations in the nitrogen cycle

TABLE 1. Regression parameters of the response ratio of afforestation, ln(afforested : control), on soil C pools predicted by
plantation age (age) and mean annual precipitation (MAP).

Soil depth and
regression parameter

Ordinary least squares Ridge regression (k ¼ 0.13)

Total extractable
C

Microbial biomass
C Total SOC

Total extractable
C Total SOC

0–10 cm

MAP (cm/yr) �0.010 (0.0047) �0.019 (0.0042) �0.011 (0.0053) �0.0095 �0.0098
Age (yr) 0.025 (0.0092) NS 0.017 (0.010) 0.023 0.016
Intercept 0.87 (0.86) 1.8 (0.45) 0.84 (0.76) 0.88 0.76
Model R2 0.72 0.59 0.59 � � � � � �
Model P value 0.0003 0.0005 0.003 � � � � � �

10–20 cm

MAP (cm/yr) NS NS NS � � � � � �
Age (yr) 0.039 (0.0066) NS 0.024 (.0070) � � � � � �
Intercept �0.56 (0.19) NS �0.58 (0.20) � � � � � �
Model R2 0.71 � � � 0.46 � � � � � �
Model P value ,0.0001 � � � 0.0041 � � � � � �

Notes: Values are estimates for regression parameters, with standard errors in parentheses, based on stepwise regression. If both
MAP and age were included in the model, parameter estimates were modified by ridge regression. MAP was calculated in cm/yr for
ease of interpretation. The value of the ridge k was selected to reduce the variance inflation factor to 1. Ellipses indicate data not
applicable; and NS, not significant.

FIG. 3. Association of soil nitrogen pools with mean annual precipitation (MAP) and plantation age. The y-axis gives the ln-
transformed response ratio, ln(value for Eucalyptus : value for grassland); positive values indicate an increase in the pool due to
afforestation, and negative values indicate a decrease. Regressions were conducted separately for different soil depths, and only
significant regression models are displayed. Regression parameter estimates are listed in Table 2.
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(Kirschbaum et al. 2008). Their model indicates that

soils in xeric regions store C through increases in the soil

C:N, while in more humid areas, increased decomposi-

tion and N losses through leaching lead to C losses. Soil

nitrogen data from our study support this explanation:

More xeric sites accumulated N with afforestation

compared to grasslands, whereas more humid sites lost

N (Fig. 3); soil C:N was also higher with afforestation in

most cases (Fig. 4, Table 4). Additionally, soil microbial

biomass C:N was less affected (i.e., lower C:N) in humid

TABLE 2. Regression parameters of response ratios of afforestation on soil N pools predicted by
plantation age and MAP.

Soil depth and
regression parameter

Ordinary least squares
Ridge regression (k ¼ 0.13)

Total extractable N Total soil N Total soil N

0–10 cm

MAP (cm/yr) �0.022 (0.0071) �0.0087 (0.0045) �0.0079
Age (yr) NS 0.014 (0.0088) 0.013
Intercept 2.7 (0.77) 0.56 (0.65) 0.49
Model R2 0.41 0.57 � � �
Model P value 0.0079 0.0042 � � �

10–20 cm

MAP (cm/yr) NS NS � � �
Age (years) 0.044 (0.013) 0.019 (0.0063) � � �
Intercept �0.93 (0.37) �0.53 (0.18) � � �
Model R2 0.45 0.40 � � �
Model P value 0.004 0.009 � � �

Notes: Values are estimates for regression parameters, with standard errors in parentheses, based
on stepwise regression. If both MAP and age were included in the model, parameter estimates were
modified by ridge regression. The value of the ridge k was selected to reduce the variance inflation
factor to 1. MAP was calculated in cm/yr for ease of interpretation. Ellipses indicate that data were
not applicable; and NS indicates not significant.

FIG. 4. Association of C:N of soil pools with mean annual precipitation (MAP) and plantation age. The y-axis gives the ln-
transformed response ratio, ln(value for Eucalyptus : value for grassland); positive values indicate an increase in the pool due to
afforestation, and negative values indicate a decrease. Regressions were conducted separately for different soil depths, and only
significant regression models are displayed. Regression parameter estimates are listed in Table 3.
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sites and was higher in xeric sites, which also suggests

support for the model in labile pools (Fig. 4, Table 4).

The patterns in SOC that we observed along the

precipitation gradient may also be partially explained by

the interaction between moisture and litter chemistry

driving decomposition rates (Aerts 1997, Wang et al.

2004). Litter with higher amounts of secondary com-

pounds, such as lignin and polyphenols produced by

Eucalyptus (Corbeels et al. 2003, Berthrong et al. 2009b),

will decompose more slowly than grass litter, which

typically has lower phenolic and lignin concentrations

compared to Eucalyptus growing in the same climatic

zones (Henriksen and Breland 1999, Jalota et al. 2006,

Kirschbaum et al. 2008). This effect, however, will likely

be magnified at the drier end of the precipitation

gradient where climatic effects on litter decomposition

may play a stronger role in SOC storage (Fig. 2). In

contrast, in more humid environments, litter decompos-

es more quickly, and the slowing of decomposition by

secondary compounds is less important than in drier

climates (Meentemeyer 1978).

Afforested soils initially lost C and N at wetter sites,

but generally recovered those elements with age if the

plantations were left to grow longer than 20–30 years

(Figs. 2 and 3). Our results match those reported for

New Zealand, Australia, and Ecuador (Davis and

Condron 2002, Paul et al. 2002, Farley and Kelly

2004). Lower net primary productivity in recently

established plantations compared to established grass-

lands together with high biomass retention in tree stems

could reduce net litter inputs into the soil for several

years during plantation establishment, explaining this

multi-decadal but transient effect on SOC pools. In

contrast, modeling results suggested that soil C:N would

take much longer to respond to afforestation than pools

of C and N did (Kirschbaum et al. 2008), yet soil C:N

ratio in our study increased in plantations of all ages

(Table 5). This change could be due to the rapid

response of C:N of total extractable and microbial

biomass (Fig. 4, Table 5). The differences in these

quickly cycling pool ratios could lead to soil microbes

altering soil organic matter content faster than models

would predict.

The changing effects of afforestation on SOC across

our MAP gradient were generally consistent with

previously published observations. Like Guo and

Gifford (2002), we found neutral effects on SOC at

;1150 mm/yr and net SOC losses in wetter regions. By

TABLE 3. Regression parameters of response ratios of afforestation on soil pool C:N predicted by plantation age and MAP.

Soil depth and
regression parameter

Ordinary least squares
Ridge regression (k ¼ 0.013)

Microbial biomass C:N Soil C:N microbial biomass C:N

0–10 cm

MAP (cm/yr) �0.010 (0.0024) NS �0.0077
Age (yr) �0.014 (0.0047) NS �0.0096
Intercept 1.6 (0.34) NS 1.28
Model R2 0.59 � � � � � �
Model P value 0.0032 � � � � � �

10–20 cm

MAP (cm/yr) NS �0.0031 (0.0012) � � �
Age (yr) 0.014 (0.0065) NS � � �
Intercept �0.020 (0.19) 0.39 (0.13) � � �
Model R2 0.25 0.33 � � �
Model P value 0.050 0.021 � � �

Notes: Values are estimates for regression parameters, with standard errors in parentheses, based on stepwise regression. If both
MAP and age were included in the model, parameter estimates were modified by ridge regression. The value of the ridge k was
selected to reduce the variance inflation factor to 1. MAP was calculated in cm/yr for ease of interpretation. Ellipses indicate data
not applicable; and NS, not significant.

TABLE 4. Mean values (with standard errors in parentheses) for microbial biomass (MB) C and N.

Soil depth and vegetation Microbial biomass C (g C/m2) Microbial biomass N (g N/m2)

0–10 cm

Eucalyptus � � � 4.00 (0.47)
Grassland � � � 5.58 (0.59)**

10–20 cm

Eucalyptus 12.0 (1.6) 1.86 (0.25)
Grassland 16.3 (1.7)** 3.28 (0.37)***

Notes:MB was not related to MAP or plantation age at certain depths, so blocked ANOVA was
conducted to test for differences across all pairs between grassland and plantations for these pools.
Ellipses indicate that the data were analyzed differently; please see Fig. 2. Asterisks indicate
significance difference level for the comparison between land uses within each soil layer.

** P , 0.01; *** P , 0.001.
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extending into drier areas, we found net SOC gains of as

much as 150% at 700 mm/yr. Our sites showed a similar

slope of response of net SOC change to MAP to those

reported by Jackson et al. (2002) for grasslands that

were invaded with woody plants, but with a wetter cross-

over point (neutral effects on SOC observed at ;600

mm/yr in that study). The difference could be due to the

deeper rooting depth of Eucalyptus plantations vs.

grasses, which would allow plantations to access

groundwater resources unavailable to the grasslands

(Sharma et al. 1987, Le Maitre et al. 1999, Jackson et al.

2002, Jobbágy and Jackson 2003, 2004b). This explana-

tion, in addition to changes in C:N, could lead to

relatively high-productivity plantations growing on

formerly less-productive dry grasslands, hence a larger

gain in C inputs with afforestation relative to small C

inputs with native grasses.

The interaction between precipitation and plantation

age and SOC can be visualized as a family of graphs

(Fig. 5). Though the applicability of this conceptual

diagram is limited to grassland regions with similar

rainfall amounts, it demonstrates how managers might

consider plantation rotation length to maximize SOC

and long-term productivity at a site. Relatively humid

sites that could potentially lose SOC with afforestation

could be managed for longer rotation times to counter-

balance the initial losses in SOC and N.

There are several issues to consider about the

generality of our results. First, this study concentrated

on afforestation of grassland soils with no post-glacial

history of forests. Ecosystems other than temperate

grasslands, e.g., crops, primary forests, or secondary

forests, might display different patterns of soil responses

to afforestation (Guo and Gifford 2002). Second, we

limited our analysis to the most active pools of C and N

in the top 20 cm of soil. Soil C responses to afforestation

have been found to be similar to depths of 50 cm

globally, but a deeper sampling scheme might lead to

different results (Guo and Gifford 2002). Similarly,

afforestation of grasslands may have important impacts

on deeper soil C and N pools on much longer time scales

(Jobbágy and Jackson 2000). Third, more labile pools of

C and N, such as extractable C and N pools and

microbial biomass C and N, can change more in short

time frames than bulk soil pools do. This temporal

variability might mask some significant relationships

between afforestation and these pools in this study;

however, the general agreement in direction and

magnitude of the relationships of labile pools and bulk

pools of C and N in this study suggests an important

link between labile and bulk soil pools.

In conclusion, these results suggest that soil costs or

benefits of afforestation depend on the ecological

context and management decisions. On the one hand,

afforestation in drier regions could have added benefits

attributable to additional C sequestration and N

availability in soil (Fig. 2). However, this result should

be considered carefully against data showing that

FIG. 5. Family of linear regression models representing the
relationship between the effect of afforestation and plantation
age at different mean annual precipitation (MAP) levels.
Regression parameters were estimated by ridge regression of
0–10 cm soil samples.

TABLE 5. Mean values for pool C:N and soil pH.

Soil depth and vegetation Total extractable C:N Total C:N Soil pH

0–10 cm

Eucalyptus 6.77 (0.71) 12.2 (0.36) 4.66 (0.12)
Grassland 5.29 (0.36) 10.5 (0.19)** 4.86 (0.13)**

10–20 cm

Eucalyptus 8.29 (0.72) � � � 4.58 (0.15)
Grassland 7.07 (0.70) � � � 4.89 (0.17)*

Notes: Total extractable (TE) C:N, total C:N, and soil pH were not related to MAP or
plantation age at some depths, so blocked ANOVA was conducted to test for differences across all
pairs between grassland and plantations for these pools. Significance of pH was calculated with soil
[Hþ] but is presented in pH units for ease of interpretation. Ellipses indicate that the data were
analyzed differently; please see Fig. 4. Asterisks indicate significance level for the comparison
between land uses within each soil layer.

* P , 0.05; ** P , 0.01.
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afforestation of drier areas can decrease water availabil-

ity relatively more than in wetter regions (Farley et al.

2005, Jackson et al. 2005). The C sequestration benefit

of afforestation in more humid regions could, in turn, be

reduced somewhat by losses of SOC and N, reduced soil

fertility, and lower long-term productivity. These results

will help facilitate informed plantation management

decisions and more accurate estimations of C seques-

tration potentials of afforestation.

ACKNOWLEDGMENTS

We thank Marcelo Nosetto, Elke Noellemeyer, German
Mazzo, Roxy Aragon, and Juan Manuel Piñeiro for valuable
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and D. H. Wall. 2002. Ecosystem carbon loss with woody
plant invasion of grasslands. Nature 418:623–626.
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