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We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the
1J(C-H) coupling constant of CH, using a decomposition into contributions from localized molecular
orbitals and compare with the 'J(N-H) coupling constant in NHj;. In particular, we discuss the well
known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the
UDS in methane. For this purpose we have implemented for the first time a localized molecular
orbital analysis for the second order polarization propagator approximation with coupled cluster
singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes
in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the
uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between
the coupled atoms on the contribution to the coupling from the localized bonding orbital between
these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead

to the UDS in methane. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897625]

. INTRODUCTION

Isotope effects play an important role in different fields
of chemistry, for example, reaction kinetics of atmospheric
reactions. In the case of isotope effects on NMR spin-spin
coupling constants (SSCC) one distinguishes' between a pri-
mary isotope effect, A', J(A — B), on a coupling "J(A-B) be-
tween nuclei A and B, where atom B has two isotopes and
a secondary isotope effect, A'vJ(A — B), where a neighbor
nucleus C has two isotopes. They have been measured in sev-
eral molecules (see, e.g., Refs. 1-13) and can be reproduced
by including vibrational corrections to the calculated coupling
constants (see, e.g., Refs. 1 and 14-21).

A particularly interesting case of an anomalous iso-
tope effect is the one-bond carbon-hydrogen SSCC in
methane, where experimentally the secondary isotope effect,
A%J(C—H) = —0.356 &+ 0.01 Hz was found to be ~5 times
larger than the primary isotope effect, ALJ(C-H) = —0.067
+ 0.06 Hz® which could quantitatively be reproduced with
vibrational averaging calculations at the SOPPA(CCSD)
level leading to ASJ(C—H) = —0.397 Hz and A}DJ(C—H)
= —0.154 Hz.'® Furthermore, the variation of this carbon-
hydrogen coupling on changing the length of the bond of car-
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later found also in other molecules.'® %2324 In all cases the
affected coupling is a one-bond coupling over a single bond,
which implies that it is dominated by the Fermi contact (FC)
term. It is therefore not surprising that the UDS can be studied
by only considering the FC term.?

Based on the comparison of molecules with and without
UDS it was proposed that the absence of lone pairs would
be a prerequisite for the UDS.?*?* Later, through an analysis
of the one-bond couplings in CH,, NH;, and H,O in terms
of contributions from localized occupied molecular orbitals
(LMO), carried out at the coupled perturbed density func-
tional theory (DFT) level with the B3LYP functional, Provasi
and Sauer?~27 could show that the lone pairs are at least not
directly responsible for the lack of UDS in neither NH; nor
H,0, as removing the lone-pair contributions to the couplings
in these two molecules did not provoke an UDS. On the other
hand, it turned out to be a subtle balance in the sensitivity of
the bond-core, bond-other bond, and other bond-other bond
contributions to changes in the bond length between the cou-
pled atoms, R, ,, which is responsible for the appearance of
the UDS in methane and its absence in ammonia or water.

A still unsettled problem, however, is the connection be-
tween the UDS and electron correlation. Already in the first
computational study on the UDS in methane it was observed
that inclusion of electron correlation at the level of the sec-
ond order polarization propagation approximation (SOPPA)
or higher is necessary for reproducing the phenomena®> and
the following SOPPA(CCSD) calculations lead to quantita-
tive agreement with the experimental values.'® Uncorrelated
calculations at the CHF level, however, fail to show an UDS
for methane, while DFT/B3LYP calculations reproduce the

© 2014 AIP Publishing LLC
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phenomena again.”>~?’ Hence the present work is devoted to
an analysis of the effect of electron correlation on each indi-
vidual localized occupied molecular contribution to the one-
bond coupling constants in CH, and NH, at the CHF and
SOPPA(CCSD) levels, which will shed light on the failure of
the CHF calculations.

Il. COMPUTATIONAL DETAILS

The different quantum chemical methods for calculating
SSCCs at the non-relativistic level*®?° are often described in
the literature®®3! and we will therefore only discuss here their
analysis in LMOs. Common to all localized molecular orbital
analysis is that the isotropic SSCC, J(X—Y), between two nu-
clei X and Y is expressed as a sum over contributions from
orbitals. In the oldest approach CLOPPA,>-27-3%33 which is
implemented at the semi-empirical as well as CHF and DFT
levels, the coupling constant can be decomposed into contri-
butions from two occupied (i and j) and two unoccupied (a
and b) localized molecular orbitals, i.e., Jifjb(X —Y). This,
however, requires that one calculates all eigenvalues of the
molecular Hessian, which becomes basically impossible for
any correlated wavefunction method. Alternatively,***7 one
decomposes the SSCC in contributions from only one oc-
cupied and one unoccupied localized orbital, J#(X —Y), or
even only one occupied localized orbital, J,(X—Y). This re-
quires only a small modification of the typical implementa-
tion of SSCCs,3%31:38.39 which involves the contraction of a
first order density matrix or solution vector N* perturbed by
the nuclear magnetic moment of nucleus X with the prop-
erty gradient P¥ of the perturbation due to the nuclear mag-
netic moment of nucleus Y, ie., J(X —Y)=), NXPr.
The transformation to localized molecular orbitals can hereby
be carried out either directly on the elements of the solution
vector, NX, and property gradient, P}, before they are con-
tracted to J{ (X — Y) or alternatively already directly after the
solution of the Hartree-Fock or Kohn-Sham equations, i.e.,
before the eventual calculation of any correlated wavefunc-
tion and the calculation of the solution vector and property
gradient.

For the current project we have implemented in the DAL-
TON program**#! such a decomposition into contributions
from one occupied and one virtual localized molecular orbital,
JA(X —Y), of SSCC calculated at the level of the second
order polarization propagator approximation with coupled
cluster singles and doubles amplitudes—SOPPA(CCSD).*:4?
Here and in the previous implementation®®?’ for the sec-
ond order polarization propagator approximation’®*>4* the
transformation to localized molecular orbitals according to
the Foster and Boys localization scheme® is carried out be-
fore the calculation of MP2 correlation coefficients or CCSD
amplitudes and the solution of the SOPPA equations.?® This
deserves two comments, because the SOPPA equations are
in general not invariant to a unitary transformation of the
orbitals, i.e., SOPPA results in canonical and localized molec-
ular orbitals will not be exactly identical. Second, the im-
plementation of the correlation coefficients and the SOPPA
equations in the DALTON program assumes a diagonal Fock
matrix as in the case of canonical orbitals. The numerical con-
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sequences of these approximations are illustrated for CH, and
NH; in Sec. IIL

In order to determine how electron correlation provokes
the UDS in methane we have calculated LMO contributions
to the FC term for the one-bond coupling constants in
CH, and NH; at the CHF, SOPPA, SOPPA(CCSD), and
DFT/B3LYP*47 levels of theory with the aug-cc-pVTZ-J
basis set.>>*® Calculations were carried out at the equilibrium
geometries, Rqy = 1.08580 A for CH, and Ry = 1.01240
A, /yny = 106.67° for NH,, and at geometries where
one of the bonds was changed by +0.05 and +0.1 A. In
the following we will in addition to the normal coupling
constant, J(X—Y), also discuss the so-called reduced coupling

constant K(X —Y) = W‘
X'y

lll. RESULTS

In Table I we present the results for the four non-
relativistic contributions to the SSCCs of CH, and NHj cal-
culated with canonical and localized orbitals in order to in-
vestigate the effect of using localized orbitals in the SOPPA
and SOPPA(CCSD) calculations. First of all, we note the
excellent agreement between the experimental values and
our SOPPA(CCSD) results. Second, it can be seen that the
largest difference between canonical and localized results is
for the FC term of NH; calculated at SOPPA level. But
this deviation amounts only to 2%, which implies that the
approximations involved in employing localized orbitals in
SOPPA calculations are insignificant. Interestingly, the local-
ized and canonical orbital results are closer to each other in
the SOPPA(CCSD) calculations. It can also be seen that the
FC term dominates indeed the 'J(X-H) coupling constants.
We will therefore only analyze this term in terms of localized
molecular orbitals in the following.

The LMO decomposition of the FC term to the reduced
coupling constants K(X-H) in CH, and NH; calculated at the
CHF, SOPPA, SOPPA(CCSD), and DFT/B3LYP levels with
the aug-cc-pVTZ-J basis set are presented in Tables II and
III, respectively. In addition to the decomposition at the equi-
librium geometry also the changes in each LMO contribu-
tion on extending or contracting the bond between the central
atom X and the first of the hydrogen atoms, H1, are shown.

TABLE 1. Comparison of contributions to Lj(X—H) for CH, and NH; in
[Hz] calculated at the SOPPA and SOPPA(CCSD) levels with canonical or
localized orbitals. The calculations were carried out at the equilibrium ge-
ometries using the aug-cc-pVTZ-J basis set.”

SOPPA SOPPA(CCSD)

CH, NH, CH, NH,

Can. Loc. Can. Loc. Can. Loc. Can. Loc.

DSO 025 025 -0.07 —-007 025 025 -0.07 -0.07
PSO 153 151 —-287 —-289 149 149 -283 -—-284
sb -001 -002 -0.13 -0.12 001 000 -0.14 -0.13

FC 12543 125.50 —60.31 —59.16 120.88 121.02 —58.69 —58.19
Total 127.20 127.25 —63.38 —62.23 122.63 122.76 —61.74 —61.22

“Experimental values for CH, 120.9 Hz?? and NH,—61.45+0.03 Hz*
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TABLE 1II. Localized CHF, SOPPA, SOPPA(CCSD), and B3LYP orbital contributions to the FC term of K(C-H) of methane at equilibrium geometry, in

[10' T2J~ 1], and their differences (AK = Kﬁnal—Kequihbﬁum) due to a change in the bond lengths by 0.1 A.
ARy CHF SOPPA SOPPA(CCSD) DFT/B3LYP
inA Contrib. K(C-H1) K(C-H2) K(C-H1) K(C-H2) K(C-H1) K(C-H2) K(C-H1) K(C-H2)
—0.1 Acore(c) 0.47 —0.53 0.86 —0.42 0.87 —0.42 0.94 —0.40
AU(C_H]_) —6.48 —0.34 —3.68 —0.15 —3.27 —0.14 —4.00 —0.13
Aa((}m) 0.65 —2.33 0.62 —1.86 0.57 —1.79 0.75 —1.95
AU(C7H3> 0.65 0.21 0.62 0.19 0.57 0.17 0.75 0.22
Aa(c_m) 0.65 0.21 0.62 0.19 0.57 0.17 0.75 0.22
A Total FC —4.07 —2.78 —-0.97 —2.07 —0.67 —2.00 —0.84 —2.07
0.0 core g, 7.59 7.59 6.17 6.17 6.08 6.08 6.32 6.32
O (C—Hleq) 48.30 —1.42 40.52 —1.72 38.94 —1.65 43.36 —2.05
O c_m) —1.42 48.30 —1.72 40.52 —1.65 38.94 —2.05 43.36
O c—m3) —1.42 —1.42 —-1.72 —1.72 —1.65 —1.65 —2.05 —2.05
O (C—Ha) —1.42 —1.42 —1.72 —1.72 —1.65 —1.65 —2.05 —2.05
Total FC 51.63 51.63 41.54 41.54 40.06 40.06 43.55 43.55
+0.1 Acore(c) —0.45 0.49 —0.93 0.38 —0.94 0.38 —1.01 0.36
An(cle ) 7.71 0.39 3.48 0.16 2.88 0.13 3.83 0.13
AJ(C_H2> —0.68 2.39 —-0.59 1.85 —0.55 1.77 —0.73 1.95
AU(C7H3> —0.68 —0.24 —0.59 —0.20 —0.55 —0.20 —0.73 —0.23
A‘T(c_m) —0.68 —0.24 —0.59 —0.20 —0.55 —0.20 —-0.73 —-0.23
A Total FC 5.23 2.79 0.76 1.98 0.29 1.90 0.61 1.96

The UDS effect in CH, is clearly seen in Table II. The three
methods including electron correlation predict that the cou-
pling to the other, non-coupled hydrogen, K(C-H2), varies
more than the coupling to the coupled hydrogen, K(C-H1),
by about 1.1 x 10 T2J-! for SOPPA, 1.3 x 10'° T2J!
for SOPPA(CCSD) and 1.2 x 10" T2J~! for B3LYP on con-
tracting the bond and by 1.2 x 10" T2J~! for SOPPA, 1.6
x 10" T2J~! for SOPPA(CCSD) and 1.4 x 10" T2J~! for

B3LYP on extending the bond length in good agreement with
the earlier results.!®?>-?7 In the CHF calculations the change
in K(C-H2) is about 40% larger than at the correlated lev-
els, but only about 53% (on contracting) or 68% (on ex-
tending) of the change in K(C-H1). In the case of NH; in
Table III, on the other hand, all methods agree on the fact
that K(N-H1) changes more than K(N-H2) but here CHF pre-
dicts a smaller change in K(N-H1) than all the correlated

TABLE III. Localized CHF, SOPPA, SOPPA(CCSD), and B3LYP orbital contributions to the FC term of K(N-H) of ammonia at equilibrium geometry, in

[10' T2 J~1], and their differences (AK = Kﬁnal_Kequilibrium) due to a change in the bond lengths by 0.1 A.
ARy CHF SOPPA SOPPA(CCSD) DFT/B3LYP
in A Contrib. K(N-H1) K(N-H2) K(N-H1) K(N-H2) K(N-H1) K(N-H2) K(N-H1) K(N-H2)
—0.1 Acore(N> 2.94 —0.18 3.09 —0.18 3.02 —0.20 3.27 —0.16
AO‘(N_H]_) —5.11 —0.64 —0.89 —0.34 —0.56 —0.31 —1.04 —0.32
Aa(Nsz) 0.87 —2.15 0.84 —1.71 0.81 —1.70 1.07 —1.82
Aa(me) 0.87 0.25 0.84 0.25 0.81 0.25 1.07 0.31
ALP(N) 2.87 1.02 2.36 0.80 2.21 0.76 2.89 0.96
A Total FC 245 —1.69 6.25 —-1.17 6.29 —-1.19 7.26 —1.01
0.0 corey, 5.85 5.85 4.66 4.66 4.74 4.74 4.75 475
O (N—Hleq) 69.26 —3.00 57.07 —3.45 55.65 —3.37 61.06 —4.20
O N-H) —3.00 69.26 —3.45 57.07 —3.37 55.65 —4.20 61.06
O (N-H3) —3.00 —3.00 —3.45 —3.45 —3.37 —3.37 —4.20 —4.20
LP(N) —7.24 —7.24 —6.25 —6.25 —5.88 —5.88 —7.31 —7.31
Total FC 61.87 61.87 48.57 48.57 47.77 47.77 50.09 50.09
+0.1 Acore(M —3.50 0.00 —3.29 0.05 —3.18 0.06 —3.49 0.02
Aa(Nle ) 7.17 0.80 0.51 —0.26 —0.01 0.34 0.64 —0.31
AO(N—HZ) —0.66 1.90 —0.60 1.47 —0.55 1.44 —0.78 1.53
AU(N7H3) —0.66 —0.24 —0.60 0.36 —0.55 —0.24 —0.78 0.35
ALP(N) —4.30 —1.26 —3.01 —0.96 —2.73 —0.90 —-3.77 —1.16
A Total FC —1.95 1.20 —6.99 0.68 —7.03 0.71 —8.17 0.43
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methods. Furthermore, from Table II one can see that the
largest change on extending or contracting the C-H1 bond
happens for the contribution from the bonding orbital between
these atoms, O (C—H1)> and not for any of the other bond contri-
butions, o (_ya/34), implying that at the level of the individual
localized orbital contributions there is no unexpected sensitiv-
ity of the individual orbital contributions, i.e., orbital UDS, as
previously pointed out.?>~

Comparing the LMO contributions in the three correlated
calculations for both CH, and NH;, one can see that with a
few exceptions DFT/B3LYP gives the largest (in absolute val-
ues) LMO contributions and changes in these contributions
followed by SOPPA while SOPPA(CCSD) typically gives the
smallest LMO contributions.

We now turn to the question how electron correlation af-
fects the orbital contributions and in particular the changes in
these contributions on changing Ry, i.€., the differences be-
tween the changes in the LMO contributions obtained at the
CHF level and at the DFT/B3LYP, SOPPA or SOPPA(CCSD)
level. In Figures 1 and 2 the differences between the CHF
changes and SOPPA(CCSD) changes in the LMO contribu-
tions to ' K£€,, are shown.

Among the contributions to K(C-H1), 0 c_y; 4, is not
only the largest but also the one which is most affected by
electron correlation followed by core,, for which the cor-

relation effects are similar though an order of magnitude
smaller. The uncorrelated CHF calculations overestimate the
negative/positive change in o (_y, 1, on contraction/extension
of the Ry, bond by 76%/121% compared to SOPPA(CCSD),
while the much smaller changes in the core contribution
corec, have the opposite sign and are underestimate at the
CHF level.

Thus, when passing from SOPPA(CCSD) to CHF the ab-
solute value of o _y,, increases by 3.21 x 10'* T2J~! on
contraction and by 4.83 x 10' T2J~! on extension of the
bond to H1. The opposite sign core c, contribution decreases
in absolute value by 0.4 x 10" T?J~! on contraction and by
0.49 x 10" 72 J~! on extension which further enhances the
overestimation of the changes in K(C-H1) on changing its
own bond. Also the changes in the bonding orbital contribu-
tion on changing the other bond, as seen from the o _yp,,
contribution to K(C-H2), are overestimated but only by about
30% or 0.54 or 0.62 x 10" T2J~!. The disappearance of the
UDS in CH, at the CHF level is thus solely due to the over-
estimation of the effect of changing the bond length on the
contribution from the associated bonding orbital.

For NH;, Table III and Figure 2, the changes in the
0 (N_H4+) contributions are also most strongly affected by elec-
tron correlation as seen for CH,, and CHF overestimates the
changes due to changing the corresponding bond length even
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more than in CH,. In addition, the changes in the LP(N) con-
tribution are overestimated at the CHF level, but only by 30%
or 57%. Overall due to the opposite signs of the changes in
0 (N—na) On one side and in LP y, and corey, on the other, the
changes in the total FC term of K(N-H1) are smaller than in
the correlated calculations quite contrary to CH,. Looking fi-
nally at the changes in K(N—H) on changing the other bond, as
seen from the o y_y,) contribution to K(N-H2), we observe
again that the CHF calculations overestimate this LMO con-
tribution and therefore the change in the total FC term. Con-
sequently due the subtle balance between the different LMO
contributions, the dependence on changes in the own bond is
reduced in the uncorrelated calculations in NH; but still larger
than the slightly increase dependence on the other bond.

IV. DISCUSSION AND CONCLUDING REMARKS

In conclusion, we summarize that in both molecules the
dominating effect is that the uncorrelated CHF calculations
overestimate the effect of changing the bond length between
two coupled atoms on the contribution of their localized bond-
ing orbital oy, to the coupling constant between these
atoms. However, this is not the only LMO contribution and
summing all leads to the disappearance of the UDS in CH,
in CHF calculations, while in NH; one gets a bit closer to an
UDS in the CHF calculations.

Previous studies of 'J(X—H) in terms of LMO con-
tributions in saturated compounds at their equilibrium ge-
ometries have also shown that the main contribution to the
coupling is given by the bond orbital, which links the cou-
pled nuclei, and that such a contribution is the most affected
by electron correlation.>®37 Recalling the well-known fact
that the restricted Hartree-Fock method poorly describes dis-
sociation of bonds and gives generally too large vibrational
frequencies, i.e., too large curvature of the potential energy
surface, it is probably reasonable to conclude that CHF cal-
culations also overestimate the changes in the contributions
from the bonding orbital to any molecular property on ex-
tending or contracting the associated bond. What makes the
situation more complicated for indirect nuclear SSCCs is the
fact that the contributions from the different LMOs have often
different signs and that the total value of the coupling con-
stants are the result of a subtle balance between these LMO
contributions—a situation whose details only a LMO analysis
as presented in this study can unravel.
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