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ABSTRACT

Odor information relayed by olfactory bulb projection neurons, mitral and tufted
cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the
external plexiform layer (EPL). Interneurons, which are accounted for largely by granule
cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in
M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the
location of dendrodendritic synapses may significantly affect the cascade of odor
information, we assessed synaptic properties and density within sublaminae of the EPL
and along the length of M/T secondary dendrites. In electron micrographs the M/T to
granule cell synapse appeared to predominate and were equivalent in both the outer and
inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T
dendrites, were more prevalent in the outer EPL. In contrast, individual gephyrin-IR
puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for
the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of
significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not
uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a
function of surface area, increases distal to the cell body. Furthermore, the distributions
of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the
M/T dendrites. Consistent with computational models, our data suggest that temporal

coding in M/T cells is achieved by precisely located inhibitory input and that distance
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soma is compensated with an increase in synaptic density.

icle
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INTRODUCTION

Olfaction begins when odorants bind to odorant receptors on olfactory sensory
neurons in the olfactory epithelium (Buck and Axel, 1991). In mice, each sensory neuron
expresses only 1 of the ~1,200 receptors (Zhang and Firestein, 2002) and projects an
axon centrally to the olfactory bulb where it coalesces into a glomerulus (Mombaerts et
al., 1996; Treloar et al., 2002). Axons from neurons expressing the same odorant receptor
converge into 2-3 of the ~3,700 glomeruli (Richard et al., 2010) where they make
excitatory synapses onto primary dendrites of the output neurons, mitral and tufted (M/T)
cells. The M/T neurons, in turn, project their axons to a variety of cortical targets,
apparently without the benefit of a well-defined odor-topography (Miyamichi et al.,
2011; Sosulski et al., 2011; Igarashi et al., 2012). Prior to the cortical relay, the output of
M/T neurons is sculpted by local olfactory bulb interneurons.

In addition to the single primary apical dendrite, M/T neurons extend several
sparsely branched secondary dendrites laterally throughout the external plexiform layer
(EPL) (Mori et al., 1983; Ke et al., 2013). Along these secondary dendrites reciprocal
dendrodendritic synapses are formed, which are most widely described for the granule
cell dendritic spines (Hinds and Hinds, 1976b; a; Sassoe-Pognetto et al., 2011). At the
sites of dendrodendritic synapses, glutamate released from M/T dendrites depolarizes the
granule cell spine, which in turn releases y-aminobutyric acid (GABA) that can locally
inhibit current spread in the M/T secondary dendrite (Xiong and Chen, 2002). The roles
of interneuron GABAergic release onto M/T dendrites remains a question of interest but
may include narrowing receptive fields and enhancing tuning specificity, synchronizing

M/T firing, providing perceptual contrast enhancement, and modulating the gain of
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olfactory bulb output (Yokoi et al., 1995; Luo and Katz, 2001; Schoppa and Urban, 2003;
Tan et al., 2010; Kato et al., 2013; Miyamichi et al., 2013).

Dendrodendritic synapses were originally identified between mitral cell secondary
dendrites and granule cell dendritic spines (Rall et al., 1966; Jackowski et al., 1978;
Shepherd et al., 2004). However, there is increasing recognition of other interneuron
populations throughout the EPL that also help shape odor activity via dendrodendritic
synapses with M/T neurons (Toida et al., 1994; Lepousez et al., 2010; Huang et al., 2013;
Kato et al., 2013; Miyamichi et al., 2013). The functional dynamics of dendrodendritic
microcircuits are generally agreed upon (Shepherd et al., 2004). Computational models
predict that mitral cell spike synchrony is modulated by the location of the
dendrodendritic synapses on secondary dendrites (McTavish et al., 2012). However, the
distribution of dendrodendritic synapses across the sublaminae of the EPL or along the
length of M/T secondary dendrites has not been empirically explored. Therefore, in the
current study we sought to understand the distribution of olfactory bulb local circuits
within the EPL and to obtain accurate reconstructions of M/T secondary dendrites and the
organization of synapses along the length of these dendrites. These data provide new
insight into the cellular mechanisms shaping the receptive fields of the olfactory output

projection neurons.

MATERIALS AND METHODS

Animals

Experiments were conducted on both male and female mice. CD-1 mice were

obtained from Charles River Laboratories (Wilmington, MA). The Tg(Thy1-YFP)GlJrs
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mice were kindly provided by Dr. Feng at Duke University and subsequently bred in-
house. These mice, which are available at JAX (RRID:IMSR _JAX:014130), were
generated by random insertion and express the transgene containing YFP driven by the
Thy1 promoter. The mice are on a C57B6/CBA background and expression is
hemizygous (Feng et al., 2000). Animals were housed on a 14-hour light cycle with
access to standard chow ad-libitum. The Yale University Animal Care and Use

Committee approved animal use and procedures.

Perfusion and fixation

Animals were deeply anesthetized with an intraperitoneal injection of Euthasol
(80mg/kg; Virbac, Fort Worth, Texas). The mouse was then perfused transcardially with
10 mL of 0.1M phosphate buffer saline (PBS; pH 7.4) plus heparin (1unit/mL) followed
by 25 mL of 4% paraformaldehyde (in PBS, pH 7.4). The olfactory bulbs were removed

from the skull and postfixed in the same fixative for two hours.

Immunohistochemistry

After washing in PBS for ten minutes, the tissue was blocked for 1 hour (3%
bovine serum albumin, 0.3% triton, 5% normal donkey serum in PBS). The tissue was
incubated overnight at 4°C with primary antibodies diluted in blocking solution: anti-
gephyrin (1:750) and anti-GFP (1:1,000) or anti-Lucifer Yellow (1:1000). The following
day, the sections were washed several times in PBS before incubating for two hours with

the Alexa555 anti-mouse, Alexa488 anti-chicken or Alexa488 anti-rabbit, and DRAQS
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(1:1,000 each in blocking solution). The tissue was again washed in PBS before

mounting and/or applying coverslips with Fluoro-Gel (EM Sciences; Hatfield, PA).

Antibody details and characterization

Further details for primary antibodies including species, clonality, manufacturer,
catalog number, Research Resource [Dentifier (RRID number;
http://scicrunch.com/resources), and working dilution are listed in Table 1.

Gephyrin — Staining for gephyrin was used to identify the postsynaptic site of the
inhibitory symmetric synapse from interneurons onto M/T dendrites. This monoclonal
antibody recognizes the brain specific 93kDa splice variant on crude synaptic membrane
fractions of rat brain (manufacturer’s data sheet). The gephyrin staining in the current
study is consistent with the staining pattern in the olfactory bulb previously described
(Panzanelli et al., 2005).

Green fluorescent protein — The GFP antiserum was used to amplify the
endogenous YFP signal in the Thy1-YFP-G tissue; as per the manufacturer data sheet this
antibody recognizes all fluorescent proteins derived from the jellyfish Aequorea victoria.
This antibody was verified by Western blot analysis and immunohistochemistry on brain
tissue from transgenic GFP-expressing mice, in which the antibody staining co-labeled
with the endogenous GFP (manufacturer’s data sheet). This antibody was also tested in
current experiments in non-YFP expressing mouse olfactory bulb tissue; no label was
detected (data not shown).

Lucifer Yellow — The Lucifer Yellow antibody has been used previously and

shown to specifically label cells filled with Lucifer Yellow (Zhang et al., 2006; Schmidt
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and Kofuji, 2011). In addition, this antibody was tested in current experiments in tissue
without Lucifer Yellow injection where no label was detected (data not shown).
Secondary antibodies and other stains — To test the specificity of secondary
antibodies, they were applied to the tissue without the primary antibodies. No specific
signal was detected confirming that the secondary signal normally results when it is
bound to the primary antibody (data not shown). A fluorescently conjugated streptavidin

was used to visualize the neurobiotin and nuclei were stained with DRAQS5.

Tissue processing
Electron microscopy

CD-1 mice, age 10 weeks, were perfused as described with 4% paraformaldehyde
and 2% glutaraldehyde in PBS and the olfactory bulbs postfixed in the same fixative for
24 hours at 4°C. The tissue was processed for conventional electron microscopy as
previously described (Montague and Greer, 1999; Au et al., 2002; Treloar et al., 2002).
Briefly, olfactory bulb sections were treated with osmium tetroxide, dehydrated through
graded alcohols and polymerized in EPON between glass slides and coverslips that were
coated with Liquid Release Agent (EM Sciences). Smaller regions containing the EPL

were micro-dissected from EPON blocks and sectioned at 0.07um.

Tg(Thyl-YFP)GJrs
After perfusing and postfixing the olfactory bulbs from the YFP animals, age 10
weeks, the tissue was cryoprotected with 30% sucrose in PBS overnight at 4°C. The next

day the tissue was mounted in Optimal Cutting Temperature compound (Fisher,
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Pittsburgh, PA). The bulbs were cut on a cryostat at 20um slices that were collected
directly onto Superfrost slides (Fisher), which were stored at -20°C until they were

stained with the anti-GFP and anti-gephyrin antibodies and DRAQS.

Lucifer Yellow injections

These injections were carried out as previously described (Imamura and Greer,
2009). Briefly, CD-1 animals at 4 weeks of age were perfused as described. Following
two-hour post fixation, the olfactory bulbs were embedded in 1.5% agarose and 300pm
free-floating sections were collected on a vibratome. The slices were mounted onto a
membrane filter and placed into a chamber with a solution of phosphate buffer (0.1M, pH
7.4). A solution of Lucifer Yellow (6% in 50mM Tris-HCI, pH 7.4: #1453, Invitrogen;
Carlsbad, CA) was backfilled into a glass micropipette, which was placed in the mitral
cell layer and the dye was injected with negative current (1- 10 nA) for 15 minutes. These
slices were then postfixed in 4% paraformaldehyde overnight at 4°C before they were

stained with the anti-Lucifer Yellow and anti-gephyrin antibodies and DRAQS.

Dye filling of individual mitral cells

CD-1 animals between the age of 12 — 15 days postnatal were anesthetized with
an injection of Euthasol and then perfused intracardially with 25 mL of ice-cold artificial
cerebrospinalfluid (ACSF, in mM:118 NaCl, 3 KCl, 1.25 NaH,POy4, 26 NaHCO;3, 10
glucose, 2 CaCl,, 1 MgSOy, 0.4 ascorbic acid, 4 sodium lactic acid, and 2 sodium pyruvic
acid; 300 mOsm, pH7.4; made fresh daily). In ice-cold ACSF equilibrated with 95%

0,/5% COa,, the brain was rapidly dissected and 300um coronal sections of the OB were
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collected on a vibratome. The sections recovered in a chamber with oxygenated ACSF at
room temperature for twenty minutes prior to recording. Then, the bulb slices were
placed in a flow-through chamber mounted on an upright microscope (Olympus
BX51WI), with continuous perfusion with oxygenated ACSF at room temperature. The
tissue slices were visualized with differential interference contrast (DIC) illumination and
40x water-immersion objective (N.A. 0.9).

Whole-cell electrophysiological recordings were obtained with standard methods
(Rela et al., 2010). Mitral cells were identified based on location in the mitral cell layer,
size of soma, the presence of spontaneous action potentials and a membrane potential
around -50mV. Pipettes were pulled from thin-walled borosilicate glass electrodes (Sutter
Instruments, Novato, CA; #BF150-110-10) on a P-97 puller (Sutter) and had a resistance
between 4-7 MQ and when filled with internal solution [in mM: 4 KCI, 125 K-
Gluconate, 10 HEPES, 10 Phosphocreatine, 1 EGTA, 0.2 CaCl,, 4 Na,-ATP, 0.3 Na-GTP
and 0.5% neurobiotin (Vector Labs, Burlingame, CA; #SP-1120); 290 mOsm, pH7.4].

Recordings were done with a Multiclamp 700B amplifier (Molecular Devices,
Sunnyvale, CA). Current signals were low-pass filtered (4 kHz) and digitized via
Digidata 1440A (Molecular Devices). Under voltage clamp (holding potential at -50
mV), the cells were recorded for 10 minutes to allow for the neurobiotin to diffuse into
the cell and the pipette was then carefully retracted.

The gephyrin staining in these acute slices was especially sensitive to the length
of fixation, similar to a previous report (Schneider Gasser et al., 2006). The optimal time
of fixation to allow for both neurobiotin and gephyrin staining was 20 minutes and all

solutions for the following staining were made fresh daily.
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After filling a mitral cell with neurobiotin, the tissue slice was immersed in 4%
paraformaldehyde (in 0.1M phosphate buffered saline, pH 7.4) for 20 minutes at room
temperature. After three twenty-minute washes in 0.1M phosphate buffered saline (PBS,
pH 7.4), the section was incubated for one hour in blocking solution (0.3% triton and 5%
normal goat serum in PBS). The slice was then incubated with the gephyrin antibody
(1:750 in blocking solution) overnight at 4°C. The next day, three twenty-minute PBS
washes were followed by 1-hour incubation with the Alexa555 anti-mouse secondary,
Alexa488 streptavidin and DRAQS (1:1,000 each in blocking solutions) at room
temperature. After several washes in PBS the tissue slice was mounted onto a glass slide

and a coverslip was applied with Fluoro-Gel.

Electron micrograph acquisition and analysis

For ultrastructural analysis thin sections were examined with a JEOL 1200
electron microscope and photographed at primary magnifications of 10,000x. The
negatives of electron micrographs were digitized on a flatbed scanner at 1200 dpi. Serial
individual electron photomicrographs were taken throughout the entire width of the EPL
from the inner glomerular layer to the mitral cell layer.

Using tissue from three different animals, five montages of serial EM images
spanning the width of the EPL were constructed and analyzed. Synapses on M/T
dendrites were identified based on stringent criteria and were then counted. Dendritic
synapses were identified on the basis of clearly distinct membrane specializations, a
definitive synaptic cleft separating the two processes, and the distribution and

morphology of vesicles. The excitatory asymmetric synapses are polarized from M/T
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dendrites onto interneuron spines with a thicker specialization postsynaptically on the
interneuron spine. Further, the asymmetric synapses contain spherical vesicles closely
apposed to the M/T dendritic membrane. The inhibitory symmetric synapses are
polarized from the interneurons onto M/T dendrites with symmetrical pre- and
postsynaptic specializations. The symmetric synapses contain oval shaped vesicles
throughout the head of the interneuron spine. These total counts entail all identifiable
dendrodendritic synapses regardless of whether the accompanying reciprocal synapse
was found in the same image.

Among these total synaptic counts, we found 64 pairs of reciprocal synapses
where the symmetric and asymmetric synapses were present in the same image. These
reciprocal pairs were analyzed using ImageJ 1.64 (National Institutes of Health,
Bethesda, MD; RRID:nif-0000-30467), where the length of the synaptic membrane
specializations was measured and the number of vesicles counted. We restricted the
vesicle number analysis to what we defined as the readily releasable pool, which
considered a depth of 100nm from the membrane specialization. Therefore, our counts
consisted of vesicles contacting the membrane specialization and the next adjacent layer
of vesicles. The measurements were analyzed with one-way ANOV As and post hoc

analysis or t-tests.

Confocal image acquisition and analysis

All other tissue sections were imaged with a Leica TCS SL laser scanning
confocal microscope (Leica Microsystems; Wetzlar, Germany). The red, green and blue

channels were obtained sequentially and then merged together to prevent sideband
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excitation of the fluorophores. Images were sampled at a resolution of 1024 by 1024
pixels with the pinhole set at 1 Airy unit and using 20x objective (N.A. 0.70) or 63x oil-
immersion objective (N.A. 1.4). Puncta and dendrite analysis was performed on the
original 8-bit images obtained with the 63x oil immersion objective and a digital zoom
factor 3.0, yielding a resolution of ~0.2um. Images in figure panels were adjusted for

brightness in Adobe Photoshop CS5.

Tg(Thyl-YFP)GJrs analysis — Quantification of the size and number of gephyrin
stained puncta was performed on single-plane confocal images obtained at 63x with a
resolution of ~0.2um. Using ImagelJ 1.64, images were adjusted using a threshold for
signal intensity that maximized the puncta signal and minimized inclusion of background
signal, typically ~80 on a 0-255 gray-value scale. Within a 500pm? area of the EPL, we
determined the number of gephyrin stained puncta with a size between 0.2um? and 2um?,
a range within our resolution limit.

For statistical analysis, both size as well as frequency of gephyrin puncta in the
outer and inner EPL were examined in each of four anatomical regions (dorsal, ventral,
medial, lateral). For each anatomical division, 3 images/animal were obtained and a total
of 3 animals were analyzed. There were no significant differences in the size or
frequency of puncta within these anatomical regions using a Kruskal-Wallis test for
multiple comparisons. Therefore, within each animal the outer and inner EPL
measurements were combined across the anatomical regions (i.e., 12 measures for each

outer and inner). Although this non-stereological method could result in oversampling of
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larger puncta (>0.5um), they represent a small fraction of the total population as shown
previously (Panzanelli et al., 2005 and see Figure 2D)

The distribution of gephyrin-IR puncta along YFP+ dendrites was also examined
in the single-plane images in a total of 360 segments (120 segments for each of three
animals). The length and diameter of YFP+ dendritic segments were measured manually
in ImageJ. The length of YFP+ segments that could be identified and measured were
12um or less and the diameter was consistent along the length of the segment (i.e., no
tapering). Therefore, using the formula for the surface area of a circular cylinder, the
surface area of dendritic segments was calculated by the following:

2*m*radius dendrite*length dendrite

The gephyrin puncta on these segments were manually determined based on
location, puncta either entirely enclosed in or half of the puncta touching the YFP+
dendrite. Data from these dendrite segments were analyzed as a measure of the diameter
of the dendrite. In this way, larger diameters represent segments closer to the somata
while the thinner diameters are located more distally from the somata. The total number
of gephyrin puncta and overall length or surface area of all dendritic segments were used
to estimate the density of synapses according to dendritic length (linear) or surface area.

Lucifer Yellow injection analysis — We analyzed 37 dendritic segments from four
different tissue slices, each from a different animal, labeled with Lucifer Yellow and
stained for gephyrin. These slices were optically sectioned with confocal microscopy
using the 63x immersion objective and a z-step size of 0.12um. The length and diameter
of dendrites were determined with ImageJ using the stacked projections with z-stack

depths averaging ~8um. The gephyrin puncta on these segments were again manually
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determined based on location: puncta entirely enclosed or half of the puncta touching the
Lucifer Yellow-filled dendrite. Data from these dendritic segments were also examined
as a measure of dendrite diameter as we did with the YFP dendrites. Similarly, the
number of gephyrin puncta was used to estimate the density of synapses according to
dendritic length (linear) or surface area.

Individually labeled mitral cells analysis — We analyzed six individually labeled
mitral cells, each from different animals, which were also stained for gephyrin. These
slices were optically sectioned with confocal microscopy using the 63x immersion
objective and 3.0 times software zoom. Using the z-stack file, we created a 3D surface
rendering of the labeled dendritic segments with Imaris 6.2.1 (Bitplane, Saint Paul, MN;
RRID:nif-0000-00314). The gephyrin staining was then filtered based on the
reconstructed surface. This allowed for the removal of all gephyrin fluorescence that was
extraneous to our labeled dendrites (as detailed in (Fogarty et al., 2013). This automatic
detection of synapses in 3D space is based on both intensity and size. Therefore, we
acquired the confocal z-stacks with a 0.12um z-step interval, which was smaller than the
average 0.5um gephyrin puncta. This ensured that puncta were present in a minimum of
two confocal optical slices and were not an artifact of the background subtraction.

In order to calculate the surface area of the dendrite as we did for the YFP and
Lucifer Yellow analysis, we measured shorter segments of dendrite <100 pum in length
that had a consistent diameter. The diameter was determined by taking the average of
three measurements along the length of dendrite, the diameter was considered consistent

when all three measurements were within 0.5um of each other. The number of gephyrin
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puncta that was determined with Imaris was used to calculate the density of synapses of

either linear (length) or surface area density along the dendrite.

Statistical analysis

All data was analyzed and graphed using Graphpad6 software (La Jolla, CA;
RRID:rid 000081). When possible, we used parametric comparisons based on t tests (for
paired comparisons, i.e., inner EPL versus outer EPL) or ANOVA (for multiple
comparisons, i.e., vesicle number, synapse length). If normality was not fulfilled due to
small sample sizes, we used Mann—Whitney Wilcoxon rank sum tests. Significance was

defined as p<0.05.

RESULTS

Within the EPL of the olfactory bulb, M/T secondary dendrites make reciprocal
dendrodendritic synapses with interneurons, primarily the granule cells. The secondary
dendrites of mitral cells are largely restricted to the inner portion of the EPL while those
of tufted cells occupy most of the outer EPL (Mori et al., 1983; Orona et al., 1984).
Similarly, subpopulations of granule cells have been described that appear to
preferentially arborize in either the superficial or deep EPL (Mori et al., 1983; Orona et
al.,; 1984; Greer, 1987). For these reasons, we divided the EPL spanning from glomerular
layer to mitral cell layer into equal outer and inner laminae for analysis.

We began our investigation of sublaminar dendrodendritic synapse distribution
with immunostaining for gephyrin. This postsynaptic scaffolding protein selectively

localizes to GABAergic synapses (Sassoe-Pognetto and Fritschy, 2000) and served as a
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proxy for identifying inhibitory synapses within the EPL. At dendrodendritic synapses
the gephyrin is clustered in M/T dendrites, facing the release site formed by the granule
cell dendritic spine (Panzanelli et al., 2009). Therefore, gephyrin-IR (immunoreactivity)
could be effectively used as a representation of the postsynaptic membrane specialization
on the M/T cell secondary dendrites.

At low magnification, gephyrin-IR was intense and uniform throughout the EPL
with only moderate staining in the glomerular layer, mitral cell layer and granule cell
layer (shown in magenta, Figure 1A). Inverted single-plane confocal images at higher
resolution were used to quantify the distribution of gephyrin-IR in the outer and inner
EPL (Figure 1B). This analysis revealed that the density of gephyrin-IR puncta was
slightly but not significantly higher in the outer EPL (225 versus 212 punta/500um?,
respectively; Figure 1C). These results are in alignment with a previous study examining
gephyrin puncta size and distribution in the EPL in rats (Panzanelli et al., 2005) .The size
of the gephyrin-IR puncta determined by cumulative and relative frequency revealed that
the majority of puncta are 0.5um?, consistent throughout the EPL (Figure 1D; cf.
Panzanelli et al., 2005).

We continued our investigation of sublaminar synapse distribution by montaging
serial electron micrographs that spanned the entire width of the EPL. At the
ultrastructural level the dendrodendritic synapses have a characteristic appearance. The
M/T to interneuron synapse, the asymmetric synapse, is defined by small pools of
spherical vesicles closely apposed to the presynaptic membrane of the M/T dendrite and
an asymmetrically thick membrane specialization on the interneuron cell spine. The

reciprocal synapse from the interneuron onto the M/T, the symmetric synapse, is defined
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by large pools of elliptically shaped vesicles within the spine head and symmetrical
thickenings on both the presynaptic and postsynaptic membranes (Figure 2A, boxed
inset).

In tissue processed for conventional transmission electron microscopy, the
dendritic profiles were easily identified. The M/T dendrites were large electron lucent
profiles with relatively smooth profiles and regular arrays of microtubules (pseudo
colored purple in Figure 2B, C). In contrast, the dendritic spines of interneurons were
smaller electron dense profiles often with irregular outlines (Figure 2B, C; pseudo
colored yellow). The excitatory asymmetric synapse contained small spherical vesicles in
the M/T dendrite that were closely apposed to the presynaptic membrane, which was
accompanied by an asymmetrically thickened membrane specialization on the spine head.
The inhibitory symmetric synapse appeared with large clusters of elliptically shaped
vesicles and symmetrical thickenings of both the pre- and postsynaptic membranes. In
optimal sections, reciprocal pairs of asymmetric and symmetric synapses were seen
adjacent to one anther (see examples in Figure 2Bi, ii).

We first counted the number of asymmetric and symmetric synapses throughout
the outer and inner EPL regardless of their reciprocity. The density of asymmetric
synapses was significantly greater than that of symmetric synapses in the outer and inner
EPL (Figure 1D, E). Specifically, in the outer EPL asymmetric synapses averaged 10.1 £
0.47 synapses/100pm* compared to symmetric synapses with 5.25 + 0.32
synapses/100pum?” (p<0.0001); in the inner EPL asymmetric synapses averaged 9.3 + 0.45

synapses/100pum” versus the symmetric synapses with 3.44 + 0.25 synapses/100pm?

(p<0.0001). The density of asymmetric synapses throughout the outer and inner EPL was
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consistent (i.e., 10.1 and 9.3 synapses/100um?, respectively). The symmetric synapses,
however, varied with a significantly higher density in the outer EPL compared inner EPL
(5.25 versus 3.44 synapses/100pum?, respectively; p<0.0001).

From among the large population of synapses, we identified 64 reciprocal
synaptic pairs. In these we quantified the length of the specialized membranes and the
number of vesicles adjacent to the membrane specialization, which we defined as the
readily releasable zone. The average length of the membrane specialization at symmetric
synapses was greater than that of the asymmetric membrane specialization (Figure 2F). In
the outer EPL, symmetric specializations averaged 397 + 23.4 nm while the asymmetric
specializations averaged 309 £ 16.3 nm (p<0.0001). Similarly, in the inner EPL the
symmetric specializations were 389 + 33.6 nm and the asymmetric specializations were
264 £ 18.5 nm (p<0.01). This difference in length was observed in 70% of the reciprocal
pairs examined in the inner EPL. That is to say, 14 of the 20 pairs examined in the inner
EPL had longer symmetrical than asymmetrical membrane specializations. Similarly,
75% (33 of the 44 examined) of reciprocal pairs in the outer EPL had longer symmetrical
synapses. It is noteworthy that the electron microscopy linear measurements of the
symmetrical synaptic membrane specialization are consistent with the diameters of the
gephyrin —IR puncta identified with the high resolution confocal microscopy. The
gephyrin-IR puncta we have measured suggest the localization of multiple gephyrin
molecules at individual inhibitory synaptic sites, as previously suggested by Specht et al.
(2013). The symmetric synapses also had more vesicles than the asymmetric synapses on
average (Figure 2G) as well as in pairs (75% in inner EPL and 77% in outer EPL). These

data suggest that there is a reciprocity of synaptological features of the symmetrical and
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assymmetrical dendrodendritic synapses, which can be equated with synaptic strength
(Schikorski and Stevens, 1999).

Sampling limitations make electron microscopy an impractical analysis for
longitudinal distribution of dendrodendritic synapses on the secondary dendrites.
Therefore, we used gephyrin-IR puncta to assess the distribution of the inhibitory
synapses along the length of the secondary dendrites. Though gephyrin-IR slightly
overestimates the number of symmetric synapses compared to the ultrastructural analysis,
it served as a general proxy for locations of dendrodendritic reciprocal synaptic pairs that
we could analyze in relation to labeled M/T dendrites.

We initiated this analysis with the Tg(Thy1-YFP)GJrs mice, where subsets of
M/T cells express YFP under the Thyl promoter (Feng et al., 2000; Imamura and Greer,
2009). In these mice, YFP is expressed in the M/T cell bodies as well as throughout the
apical and secondary dendrites (Figure 3A). Mitral cell somata are found in a discreet
layer (the mitral cell layer, MCL) located a few hundred microns from the glomerular
layer and have their secondary dendrites distributed predominately in the inner EPL. In
contrast, tufted cell somata are located in the EPL with secondary dendrites localizing
primarily to the outer EPL (Mori et al., 1983). Mitral and tufted cells also differ in their
axonal and dendritic projection patterns (Nagayama et al., 2010; Igarashi et al.,

2012). However, they both form dendrodendritic synapses with interneurons. The density
of YFP+ dendrites in the outer EPL is lower than in the inner EPL, which might reflect a
preferential labeling of mitral cells over the tufted cells. Regardless, the YFP labeled
dendrites in both the outer and inner EPL were suitable for our purposes of analyzing

individual dendritic segments. In single-plane confocal images at high resolution,
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individual YFP+ dendritic segments could be identified (Figure 3B). The gephyrin-IR
puncta associated with the segments of interest were determined in addition to measuring
the length and diameter of dendritic segments (Figure 3C, C’). Using these
measurements, we analyzed the density of synapses along dendritic segments as a
function of dendrite diameter. In this way, segments with the larger diameter, upwards of
2.5um, represent proximity to the soma while segments with smaller diameters are
progressively distal to the soma. When the number of gephyrin-IR puncta was divided by
the available length of a dendritic segment the calculated linear density was greater
proximally than distally, i.e., segments with a larger diameter had a greater number of
synapses per unit length (Figure 3D). This pattern of linear density was similar in both
the outer and inner EPL. However, dendrites are not symmetrical cylinders with a
constant diameter. Rather, the diameter of dendrites tapers toward the terminal ends
(Cuntz et al., 2007; Donohue and Ascoli, 2008). As such, the proximal dendritic
segments expose a larger surface area available for synaptic inputs, i.e., “synaptic space”.
Thus, we considered gephyrin density in relation to the entire area available for synaptic
contact. When the number of gephyrin-IR puncta was divided by the surface area of a
dendritic segment, we found a higher density of synapses on the segments with smaller
diameters and hence, further from the cell body (Figure 3E).

While the Tg(Thy1-YFP)GJrs model provided extensive labeling of M/T
dendrites throughout the EPL, this was a hindrance to following an individual dendrite
for more than ~ 12um. Therefore, we sought to examine smaller populations of labeled
M/T dendrites by iontophoretically injecting Lucifer Yellow dye into the mitral cell layer

of fixed olfactory bulb slices. These injections resulted in the labeling of subsets of cells
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in the vicinity of the pipette (Figure 4A). At higher magnification of this tissue, we could
identify and measure individual Lucifer Yellow-labeled M/T dendritic segments and the
associated gephyrin-IR puncta (Figure 4B). Even though these injections also labeled a
subset of granule cells due to their high density in the mitral cell layer (Imamura et al.,
2006), the spiny appearance of granule cell dendrites made them easy to distinguish from
the M/T dendrites of interest (Figure 4B arrow). The Lucifer Yellow-labeled secondary
dendrites of interest were largely restricted to the inner EPL given placement of the
pipette. This labeling technique allowed us to follow individual dendritic segments for
longer distances throughout the depth of the tissue. In z-stack projections we identified
the gephyrin-IR puncta along the Lucifer Yellow+ dendrites of interest (Figure 4C, C’).
As with the YFP+ dendrites in the previous experiment, the gephyrin density was
analyzed first as a function of dendrite diameter. The linear density revealed that
distribution of gephyrin-IR synapses averaged 1.94 synapses/um along dendrites
regardless of dendrite diameter, i.e., the slope of the best-fit line was not significantly
different than 0. (Figure 4D). Yet when we considered the “synaptic space” of the
segment and determined the gephyrin-IR density in terms of the dendritic surface area we
again found that the synaptic density was higher on segments with a smaller diameter
(i.e., more distal to the somata; Figure 4E).

Using two different methods to label M/T dendrites, our data thus far indicate that
the density of gephyrin-IR puncta as a function of dendritic diameter is greater at sites
more distal to the soma of M/T cells. To pursue this further we turned to
electrophysiological methods in order to fill individual mitral cells with neurobiotin.

Using acute slices, mitral cells were readily identified based on their large somata size
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(10-20pm), location in the mitral cell layer, a resting membrane potential near -50mV
and spontaneous action potentials (Figure 5SA). Mitral cells were filled with neurobiotin
under voltage clamp for 10 minutes, after which the slices were stained with streptavidin-
A488, anti-gephyrin, and DRAQS (shown in green, red, and blue, respectively; Figure
5B).

Our aim was to reconstruct mitral cell secondary dendrites and map their
inhibitory synaptic input. To achieve this, we used confocal microscopy to optically
section the entire filled mitral cell, which was largely confined to the upper 40um of the
section (Figure 5B). These z-stack images were used with Imaris software to create a
detailed surface rendering of the neurobiotin-filled mitral cell (Figure 5C). The gephyrin-
IR in the red channel was then filtered based on the neuronal surface so that only the
signal that was continuous with the mitral cell surface was conserved (see methodological
details in Fogarty et al., 2013). From the filtered gephyrin-IR channel, the number of
puncta along dendritic segments was automatically determined and modeled with the
dendritic surface. Hence, the single cell fills enabled us to examine the distribution of
gephyrin-IR puncta at high resolution and for much longer distances along the secondary
dendrites. This revealed an additional feature of synaptic organization. Namely, the
distribution of puncta was not uniform or homogeneous along the dendritic length (Figure
5D1-4, E1-4; gephyrin puncta shown in magenta). Puncta appeared heterogeneously and
in small clusters with intervening domains that did not show evidence of synaptic
specializations. This observation is reminiscent of reports detailing synaptic clusters

(Druckmann et al., 2014; Rotterman et al., 2014) and consistent with the notion that
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receptive fields of the secondary dendrites may have spatially defined attributes that
contribute to odor information processing (Migliore et al., 2010; McTavish et al., 2012).
In order to calculate the length and surface area of these dendrites as we did for
the previous analyses, we measured shorter segments (<100 pum in length) that had a
consistent diameter. We analyzed a total of six filled mitral cells in this manner and with
these measurements obtained linear and surface density of gephyrin as a measure of
dendrite diameter (Figure 5F, G). These data were consistent with our prior
measurements in the YFP mice and following Lucifer Yellow injections. These results
provide further evidence that the linear density of gephyrin-IR is consistent along
dendrites, in this case averaging 1.1 synapses/um. Conversely, the surface area density
reveals a higher synaptic density on the terminal segments. Thus, using various methods
to label M/T dendrites, our data consistently show that gephyrin density expressed as a

function of surface area increases distal to the cell body.

DISCUSSION

Reciprocal dendrodendritic synapses between the secondary dendrites of M/T
cells and the dendritic spines of interneurons, primarily granule cells, modulate odor
information. Here, we examined their distribution in sublaminae of the EPL and along the
length of isolated secondary M/T dendrites. Using a high resolution mapping of
gephyrin-IR, as a proxy for reciprocal synapses, we determined the density of
dendrodendritic synapses along the secondary dendrite proximal and distal to the soma.
Our analyses demonstrate that the distribution of dendrodendritic synapses is comparable

in the outer and inner sublaminae of the EPL, their distribution along individual M/T
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dendrites is heterogeneous. First, while the absolute density of appositions (i.e., linear
density) is relatively constant along the length of dendrites, they appear in clusters with
intervening membrane devoid of synaptic specializations. Second, the surface area

density of synapses increases distally as the dendrite tapers toward the terminal end.

Analysis of EPL synapses

To identify dendrodendritic synapses within the EPL, we utilized staining for
gephyrin. This postsynaptic scaffolding protein selectively localizes to GABAergic
synapses (Sassoe-Pognetto and Fritschy, 2000) and has been used extensively in the
analysis of dendrodendritic synapses in the EPL specifically (Panzanelli et al., 2005;
Panzanelli et al., 2009; Pallotto et al., 2012). Similar to these previous studies, we found
that gephyrin-IR was distinctly punctate and uniform throughout the extent of the EPL.

We furthered these analyses of dendrodendritic synaptic distribution throughout
the EPL at the ultrastructural level. In our electron micrograph montages, we used strict
criteria to identify dendritic symmetric and asymmetric membrane specializations. Our
total synaptic counts, regardless of their reciprocity, showed greater numbers of
asymmetric than symmetric synapses. Yet the dendrodendritic synapses throughout the
EPL are agreed to be almost entirely reciprocal (Woolf et al., 1991). The challenge of
consistently imaging the reciprocal pair in a single electron micrograph is likely due in
part to the plane of section and the difficulty of unequivocally identifying the symmetric
specializations compared to the more obvious asymmetrical thickenings. Taken together
with the uniform gephyrin-IR, it is possible that the gephyrin staining detects intracellular

gephyrin that is not yet fully integrated into synaptic membranes and/or unoccupied
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synaptic specializations that might be expected based on the ongoing turnover of the
olfactory bulb granule cells (Whitman and Greer, 2009).

Olfactory bulb granule cells are continuously generated in the subventricular zone
after which they integrate into olfactory bulb circuits. Deep granule cells, whose
dendrites preferentially arborize in the inner EPL, turn over more frequently in adults
than do superficial granule cells (Lemasson et al., 2005). Developmentally, Hinds and
Hinds (1976b) speculated in the neonate that the excitatory asymmetric synapse formed
prior to the reciprocal symmetric synapse. Similarly, Kelsch et al. (2008) suggested that
in adult born granule cells the excitatory glutamatergic synapse onto granule cell apical
dendrites formed prior to the reciprocal inhibitory synapse. Our lower estimate of
reciprocal synapses in the inner EPL may reflect a granule cell population that is more
transient or immature than those targeting the outer EPL. Likewise, we previously
showed that adult-born granule cells are first innervated by axon collaterals prior to
integrating into EPL dendritic circuitry (Whitman and Greer, 2007). The current data we
report here are consistent with the notion that there is pause between the formation of
excitatory and inhibitory synapses along the secondary dendrites.

The analysis of reciprocal dendrodendritic pairs illuminates the variability of
synaptic details within the paired unit. In particular, the number of vesicles and the length
of the symmetric membrane specialization were both greater than those of the
asymmetric synapses throughout the EPL. These measures can infer synaptic strength.
For instance, cortical synapses show tight correlations between synaptic strength and the
surface area of the postsynaptic density and the total number of presynaptic vesicles

(Harris and Weinberg, 2012) as well as the number of docked vesicles (Lisman and
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Harris, 1993; Schikorski and Stevens, 1997; 1999). Furthermore, the probability of
vesicle release increases as a function of the number of docked vesicles (Dobrunz and
Stevens, 1997; Murthy et al., 1997). While these analyses have been based on
axodendritic synapses, it is tempting to speculate that our data suggest that symmetric
synapses within reciprocal pairs exert a comparatively stronger influence and that this

inhibition may be greater in the outer EPL than in the inner EPL.

Inhibitory synaptic distribution along M/T dendrites

Recent studies shed light on the diversity of GABAergic interneurons in the EPL,
some of which form dendrodendritic synapses with M/T neurons (Pressler and
Strowbridge, 2006; Parrish-Aungst et al., 2007; Eyre et al., 2008). Notably, parvalbumin
expressing interneurons appear to make reciprocal dendrodendritic synapses with M/T
dendrites (Toida et al., 1994; Kosaka and Kosaka, 2008). Given that our analysis did not
discriminate between granule cells and other interneuron types, synapses made by these
interneurons were undoubtedly included in our analyses. However, granule cells, at a
density of 10°/mm’ (Richard et al., 2010) outnumber other populations of olfactory bulb
interneurons, conservatively, by 100:1 (Lledo et al., 2008). Thus it seems reasonable to
propose that the data we report here are largely representative of granule cell to M/T
neuron interactions.

Using three different methods to label M/T cell secondary dendrites combined
with gephyrin staining generated results consistent across all three approaches. The
density of gephyrin-IR puncta as measured by surface area increased as the dendrites

tapered distally from the cell soma. The gephyrin-IR puncta often appeared
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heterogeneously distributed in clusters across the surface of the secondary dendrites.
Proximal to the soma, or among the largest diameter dendritic segments, we found less
evidence of clustering. Rather, gephyrin-IR puncta proximal to the soma appeared to be
more isolated from their nearest neighbor puncta. This might suggest that interneurons
targeting dendrites proximal to the soma establish isolated synapses whereas those
targeting branches distal to the soma establish small synaptic networks mediated by
clustered synapses. The mechanisms underlying the heterogeneous distribution and
clustering of synapses is not known but may reflect developmental mechanisms. For
example, hippocampal synaptic networks show evidence of differential stability or
strengthening of synapses at different points in the dendritic arbor as a function of
activity (Steward et al., 1998). The heterogeneous synaptic distribution on M/T dendrites
may reflect granule cell turnover, and therefore synaptic turnover, in relation to their
connection with M/T cells. It is intriguing that the proximal to distal densities of
gephyrin-IR puncta were equivalent in the outer and inner EPL. There is a general
consensus that mitral cell secondary arbors are largely restricted to the inner EPL while
tufted cell arbors remain in the outer EPL (Mori et al., 1983). The Lucifer Yellow and
neurobiotin labeling specifically targeted mitral cells, while the Tg(Thy1-YFP)Glrs
labeled both mitral and tufted cells, albeit the latter less heavily (cf. Figure 3 and the
paucity of YFP labeling in the outer EPL). This suggests that mechanisms regulating the
distribution of dendrodendritic complexes are similar for mitral and tufted cells.

As noted above, recent reports underscore the diverse types of interneurons in the
olfactory bulb, which also contribute to local circuitry (Pressler and Strowbridge, 2006;

Parrish-Aungst et al., 2007; Eyre et al., 2008). Of these interneurons, those expressing
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parvalbumin are broadly connected to M/T cells, consistent with their broad odor tuning,
compared to the more narrowly-tuned and perhaps more narrowly connected granule
cells (Kato et al., 2013; Miyamichi et al., 2013). These observations imply that the
synapses on the most distal dendrites in our analysis reflect those of the parvalbumin
interneurons while the synapses more proximal to the M/T soma may be derived from

granule cells.

Functional considerations

The temporal and spatial shaping of olfactory bulb output is strongly influenced
by dendrodendritic inhibition. The reciprocity and synaptic arrangement of
dendrodendritic synapses underlies odor discrimination by way of sharpening odor tuning
and enhancing contrast (Lagier et al., 2007). Following primary afferent excitation, action
potentials in M/T neurons actively propagate along the dendrites. The primary apical
dendrites within the glomerulus have a high concentration of sodium channels and action
potentials propagate along their length without attenuation (Bischofberger and Jonas,
1997; Chen et al., 1997). Similarly, action potentials actively propagate to the distal ends
of the secondary M/T dendrites (Bischofberger and Jonas, 1997; Xiong and Chen, 2002)
though there may be exceptions (Margrie et al., 2001). Glutamate release from these
secondary dendrites requires substantial depolarization (Xiong and Chen, 2002) and
activation of high-threshold calcium channels (Isaacson and Strowbridge, 1998),
triggering the reciprocal GABA release from the interneuron dendritic spines. The
inhibitory synaptic input that is recruited following an action potential regulates the

extent of action potential propagation along the lateral dendrites (Xiong and Chen, 2002).
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The distal segments of secondary dendrites are likely less influenced by back-
propagated action potentials and more likely to participate in local dendrodendritic
microcircuits. Likewise, the inhibition from the distal synapses would have a weaker
influence on action potentials initiation at the soma. Hence, the distal inhibitory synapses
might correspond to compartments of the secondary dendrites predominantly
participating in microcircuits. Similar microcircuits have been described in cortical
pyramidal neurons where inhibitory synapses are locally clustered along dendritic spines
and shafts (Chen et al., 2012) and within ~10um of each other, the spatial range of local
intracellular signaling mechanisms (Golding et al., 2002; Major et al., 2008). The role of
the distant synaptic microcircuits on M/T secondary dendrites seems most compatible
with lateral inhibition. Conversely, the proximal inhibitory input would drive temporal
coding, such as synchronized M/T firing (Kashiwadani et al., 1999; Nusser et al., 2001;
Lagier et al., 2004; Lagier et al., 2007). The synaptic distribution that we present here
suggests that temporal coding is achieved by precisely located inhibitory input, as is
predicted from network models (McTavish et al., 2012), while the lateral inhibition

requires more synaptic strength, in terms of greater synaptic density.
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FIGURE LEGENDS

Figure 1. Inhibitory synaptic distribution throughout the external plexiform layer (EPL)
as seen by staining for gephyrin, a post-synaptic marker of GABAergic synapses. A.
Gephyrin-IR (immunoreactivity, in magenta) appears punctate and uniform throughout
the EPL. Layers within the olfactory bulb are visualized and delineated with the DRAQS
nuclear stain (green). B. Staining from boxed region in panel A; Gephyrin was imaged at
higher resolution and the gray-scale inverted images were used to analyze puncta. C. The
density of gephyrin-IR puncta is uniform across the outer EPL (black bar) and inner EPL
(grey bar). D. The mean size of gephyrin-IR puncta is 0.5um; cumulative and relative
frequencies are also shown.

Error bars indicate SEM. Abbreviations: GL, glomerular layer; EPL, external plexiform
layer; MCL, mitral cell layer; GCL, granule cell layer.

Figure 2. Dendrodendritic synapses in the EPL. A. A simplified circuit of the olfactory
bulb. The mitral/tufted cells (M/T; purple) extend their primary dendrite into glomeruli
where they receive input from the axon terminals of olfactory sensory neurons. Along the
M/T secondary dendrites, which extend laterally through the EPL, dendrodendritic
synapses are formed with interneurons (yellow). These synapses occur primarily with
granule cells, located deep in the granule cell layer, and possibly with various interneuron
populations within the EPL. Box inset: The dendrodendritic microcircuit begins at the
asymmetric synapses with the M/T release of glutamate onto interneuron dendritic spines.
This synapse is defined by vesicles closely apposed to the M/T presynaptic membrane
and an asymmetrically thick post-synaptic specialization on the interneuron membrane.
The reciprocal symmetric synapse entails vesicle clusters throughout the spine of the
interneuron and symmetrical thickenings in both the pre- and post-synaptic membranes.
Gephyrin is a post-synaptic scaffolding restricted to GABAergic synapses, and in this
case to the M/T dendrites. B. Cross section through a M/T dendrite (pseudocolored
purple) and interneuron dendritic spines (pseudocolored yellow) with two examples of
reciprocal dendritic pairs labeled i, ii. Magnification of the corresponding synapses in
panel B. In both images, the asymmetric M/T to interneuron synapse is on the left and the
symmetric interneuron to M/T synapse is on the right. Arrows indicate the direction of
the synapse. C. Another cross section through dendrites highlighting symmetric and
asymmetric synapses. D, E. The density of asymmetric synapses is consistent throughout
the EPL while the density of symmetric synapses is higher in outer than the inner EPL.

F, G. From 64 reciprocal synapse pairs, the average length of the specialized membranes
as well as the number of vesicles in the symmetric synapses are greater than that of the
asymmetric synapses in both the outer and inner EPL.

Error bars indicate SEM. Abbreviations: GL, glomerular layer; EPL, external plexiform
layer; MCL, mitral cell layer; GCL, granule cell layer; Glu, glutamate; asym, asymmetric
synapse; sym, symmetric synapse.

Figure 3. Distribution of gephyrin-IR inhibitory synapses along M/T lateral dendrites in
Tg(Thyl-YFP)GJrs tissue. The Thyl promoter drives YFP expression in large subsets of
M/T cells. A. YFP is shown in green, Gephyrin-IR in red, and DRAQS in blue, which is
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used to delineate the layers of the olfactory bulb. As shown in single-plane confocal
images, despite the fainter YFP staining in the outer compared to inner EPL, there was
sufficient labeling to examine lateral dendrites in both outer and inner EPL. B. Higher
resolution of the boxed region in panel A reveals it is possible to identify and measure
individual dendritic segments and determine gephyrin-IR puncta that are associated with
the segments in a single-plane confocal image. C, C’. Magnification of the boxed region
in panel B with YFP in green and gephyrin in magenta. Upon delineating the boundaries
of the YFP labeling, the boundaries were superimposed onto the magenta channel where
the gephyrin-IR synapses were identified and counted. D. The gephyrin density was
analyzed as a measure of the dendrite diameter; the larger diameters are closer to the
somata while the smaller diameters are more distal to the somata. When the number of
gephyrin-IR puncta is divided by the available length of the dendritic segment, the
resulting linear density shows that segments more proximal to the somata, i.e., with a
larger diameter, have the highest density of gephyrin-IR synapses. This density occurs on
dendrites in both the outer and inner EPL. The slope of the line, which represents the best
fit of the data by linear regression, is significantly different than 0. E. Considering the
entire “synaptic space” of a dendritic segment and dividing the number of gephyrin-IR
puncta by the surface area of the segment shows that segments more distal to the somata,
and hence with a smaller diameter, have the higher density of gephyrin-IR synapses. This
is true for dendrites in both the outer and inner EPL, the slope of the best-fit line is
significantly different than 0.

Abbreviations: GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell
layer; GCL, granule cell layer.

Figure 4. Gephyrin-IR inhibitory synapses along small populations of Lucifer-Yellow
labeled M/T lateral dendrites. A. Injecting Lucifer Yellow into the mitral cell layer labels
subsets of cells in the vicinity of the pipette, shown here in 2D confocal projections.
Lucifer yellow is in green, gephyrin-IR is in red, and the nuclear stain DRAQS is in blue.
B. Higher resolution of the boxed region in panel A reveals dendrites that are labeled
with Lucifer Yellow. This includes granule cell dendrites but because these are
characteristically spiny (arrows), we could easily avoid including them in our analysis.
C, C’. Magnification of the boxed region in panel B with Lucifer yellow in green and
gephyrin in magenta. The boundaries of the Lucifer Yellow+ dendrite were delineated
and superimposed onto the magenta channel, where the gephyrin-IR puncta were
identified and counted. D. The linear density of gephyrin-IR puncta is more or less
uniform along the Lucifer Yellow dendritic segments but tends towards more gephyrin-
IR puncta on dendrites with a larger diameter. The slope of the best-fit line does not
differ significantly from 0. E. The surface area density of gephyrin-IR shows that more
synapses occur on dendritic segments that have smaller diameters and, thus, are further
from the cell body. The slope of the best-fit line is significantly different from 0.
Abbreviations: EPL, external plexiform layer; MCL, mitral cell layer.

Figure 5. Gephyrin-IR inhibitory synapses distributed along lateral dendrites of

individually labeled mitral cells. A. Representative recordings of three different mitral
cells'in whole-cell configuration and current clamp mode showing a variety of firing
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patterns. The cell at the top showed regular firing at 14 Hz; the cell in the middle showed
irregular firing at 2 Hz; the cell at the bottom fired in bursts, at 16 Hz during the bursts.

B. A single mitral cell filled with neurobiotin (green) and stained with gephyrin (red) and
DRAQS (blue) and displayed in a 2D confocal projection. C. The same mitral cell in
panel A reconstructed in 3D using Imaris software. D1-4, E1-4. Models composed from
higher resolution images corresponding to boxes in panel B reveal that gephyrin-IR
puncta (magenta) are non-uniformly distributed along dendrites and often occur in
clusters. F. Analysis from six different cells shows that the linear density of gephyrin-IR
puncta is mostly uniform along the dendritic segments, as the slope of the best-fit line
does not differ significantly from 0. G. The surface area density of gephyrin-IR synapses
reveals that the smaller diameter segments, and hence those more distal to the somata,
have a greater synaptic density. The slope of the best-fit line is significantly different than
0.

Abbreviations: GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell
layer.
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Inhibitory synaptic distribution throughout the external plexiform layer (EPL) as seen by staining for
gephyrin, a post-synaptic marker of GABAergic synapses. A. Gephyrin-IR (immunoreactivity, in magenta)
appears punctate and uniform throughout the EPL. Layers within the olfactory bulb are visualized and
delineated with the DRAQ5 nuclear stain (green). B. Staining from boxed region in panel A; Gephyrin was
imaged at higher resolution and the gray-scale inverted images were used to analyze puncta. C. The
density of gephyrin-IR puncta is uniform across the outer EPL (black bar) and inner EPL (grey bar). D. The
mean size of gephyrin-IR puncta is 0.5um; cumulative and relative frequencies are also shown.

Error bars indicate SEM. Abbreviations: GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell
layer; GCL, granule cell layer.
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Dendrodendritic synapses in the EPL. A. A simplified circuit of the olfactory bulb. The mitral/tufted cells
(M/T; purple) extend their primary dendrite into glomeruli where they receive input from the axon terminals
of olfactory sensory neurons. Along the M/T secondary dendrites, which extend laterally through the EPL,
dendrodendritic synapses are formed with interneurons (yellow). These synapses occur primarily with
granule cells, located deep in the granule cell layer, and possibly with various interneuron populations within
the EPL. Box inset: The dendrodendritic microcircuit begins at the asymmetric synapses with the M/T release
of glutamate onto interneuron dendritic spines. This synapse is defined by —vesicles closely apposed to the
M/T presynaptic membrane and an asymmetrically thick post-synaptic specialization on the interneuron
membrane. The reciprocal symmetric synapse entails vesicle clusters throughout the spine of the
interneuron and symmetrical thickenings in both the pre- and post-synaptic membranes. Gephyrin is a post-
synaptic scaffolding restricted to GABAergic synapses, and in this case to the M/T dendrites. B. Cross
section through a M/T dendrite (pseudocolored purple) and interneuron dendritic spines (pseudocolored
yellow) with two examples of reciprocal dendritic pairs labeled i, ii. Magnification of the corresponding
synapses in panel B. In both images, the asymmetric M/T to interneuron synapse is on the left and the
symmetric interneuron to M/T synapse is on the right. Arrows indicate the direction of the synapse. C.
Another cross section through dendrites highlighting symmetric and asymmetric synapses. D, E. The
density of asymmetric synapses is consistent throughout the EPL while the density of symmetric synapses is
higher in outer than the inner EPL. F, G. From 64 reciprocal synapse pairs, the average length of the
specialized membranes as well as the number of vesicles in the symmetric synapses are greater than that of
the asymmetric synapses in both the outer and inner EPL.

Error bars indicate SEM. Abbreviations: GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell
layer; GCL, granule cell layer; Glu, glutamate; asym, asymmetric synapse; sym, symmetric synapse.
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Distribution of gephyrin-IR inhibitory synapses along M/T lateral dendrites in Tg(Thy1-YFP)GJrs tissue. The
Thyl promoter drives YFP expression in large subsets of M/T cells. A. YFP is shown in green, Gephyrin-IR in
red, and DRAQS5 in blue, which is used to delineate the layers of the olfactory bulb. As shown in single-plane
confocal images, despite the fainter YFP staining in the outer compared to inner EPL, there was sufficient
labeling to examine lateral dendrites in both outer and inner EPL. B. Higher resolution of the boxed region
in panel A reveals it is possible to identify and measure individual dendritic segments and determine
gephyrin-IR puncta that are associated with the segments in a single-plane confocal image. C, C'.
Magnification of the boxed region in panel B with YFP in green and gephyrin in magenta. Upon delineating
the boundaries of the YFP labeling, the boundaries were superimposed onto the magenta channel where the
gephyrin-IR synapses were identified and counted. D. The gephyrin density was analyzed as a measure of
the dendrite diameter; the larger diameters are closer to the somata while the smaller diameters are more
distal to the somata. When the number of gephyrin-IR puncta is divided by the available length of the
dendritic segment, the resulting linear density shows that segments more proximal to the somata, i.e., with
a larger diameter, have the highest density of gephyrin-IR synapses. This density occurs on dendrites in
both the outer and inner EPL. The slope of the line, which represents the best fit of the data by linear
regression, is significantly different than 0. E. Considering the entire “synaptic space” of a dendritic
segment and dividing the number of gephyrin-IR puncta by the surface area of the segment shows that
segments more distal to the somata, and hence with a smaller diameter, have the higher density of
gephyrin-IR synapses. This is true for dendrites in both the outer and inner EPL, the slope of the best-fit line
is significantly different than 0.
Abbreviations: GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; GCL, granule cell
layer.
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Gephyrin-IR inhibitory synapses along small populations of Lucifer-Yellow labeled M/T lateral dendrites. A.
Injecting Lucifer Yellow into the mitral cell layer labels subsets of cells in the vicinity of the pipette, shown
here in 2D confocal projections. Lucifer yellow is in green, gephyrin-IR is in red, and the nuclear stain
DRAQS5 is in blue. B. Higher resolution of the boxed region in panel A reveals dendrites that are labeled with
Lucifer Yellow. This includes granule cell dendrites but because these are characteristically spiny (arrows),
we could easily avoid including them in our analysis. C, C'. Magnification of the boxed region in panel B with
Lucifer yellow in green and gephyrin in magenta. The boundaries of the Lucifer Yellow+ dendrite were
delineated and superimposed onto the magenta channel, where the gephyrin-IR puncta were identified and
counted. D. The linear density of gephyrin-IR puncta is more or less uniform along the Lucifer Yellow
dendritic segments but tends towards more gephyrin-IR puncta on dendrites with a larger diameter. The
slope of the best-fit line does not differ significantly from 0. E. The surface area density of gephyrin-IR
shows that more synapses occur on dendritic segments that have smaller diameters and, thus, are further
from the cell body. The slope of the best-fit line is significantly different from 0.
Abbreviations: EPL, external plexiform layer; MCL, mitral cell layer.
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Gephyrin-IR inhibitory synapses distributed along lateral dendrites of individually labeled mitral cells. A.
Representative recordings of three different mitral cells in whole-cell configuration and current clamp mode
showing a variety of firing patterns. The cell at the top showed regular firing at 14 Hz; the cell in the middle

showed irregular firing at 2 Hz; the cell at the bottom fired in bursts, at 16 Hz during the bursts.
B. A single mitral cell filled with neurobiotin (green) and stained with gephyrin (red) and DRAQ5 (blue) and
displayed in a 2D confocal projection. C. The same mitral cell in panel A reconstructed in 3D using Imaris
software. D1-4, E1-4. Models composed from higher resolution images corresponding to boxes in panel B
reveal that gephyrin-IR puncta (magenta) are non-uniformly distributed along dendrites and often occur in
clusters. F. Analysis from six different cells shows that the linear density of gephyrin-IR puncta is mostly
uniform along the dendritic segments, as the slope of the best-fit line does not differ significantly from 0. G.
The surface area density of gephyrin-IR synapses reveals that the smaller diameter segments, and hence
those more distal to the somata, have a greater synaptic density. The slope of the best-fit line is
significantly different than 0.
Abbreviations: GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer.
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Table 1. Antibodies and other stains

Primary Antiserum Immunogen Company (catalog number) RRID Working dilution
Gephyrin, mouse monoclonal Purified rat gephyrin ~ Synaptic Systems; Goettingen, Germany 1:750
IgGy subtype N-terminus (147 011) RRID:AB 887717

GFP, chicken polyclonal Recombinant GFP AbCam; Cambridge, MA 1:1,000
(ab13970) RRID:AB_ 300798

Lucifer Yellow, rabbit polyclonal Lucifer Yellow Invitrogen; Carlsbad, CA 1:1,000
(A5750) RRID:AB 1501344

Secondary Antiserum Conjugated to

donkey anti-mouse IgG; Alexa555 Invitrogen Carlsbad, CA 1:1,000
(#A21127) RRID:AB_ 141596

goat anti-chicken Alexa488 Invitrogen 1:1,000
(#A21042) RRID:AB 141357

goat anti-rabbit Alexad88 Invitrogen 1:1,000
(A11034) RRID:AB 10562715

Other Stains

Streptavidin conjugated to Alexa-488 Invitrogen 1:1,000
(#S11223) RRID:AB_2336881

DRAQS5, far red nuclear stain Biostatus Ltd; Leicestershire, UK 1:1,000

(DR50050) RRID:AB_2314341
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Gephyrin immunoreactive appositions, a proxy for dendrodendritic synapses along mitral cell secondary
dendrites, appear in clusters with intervening membrane devoid of synapses. The absolute, or linear,
synaptic density is constant along the length of dendrites. Yet when expressed as a function of surface area,
the synaptic density increases distally as dendrites taper toward the terminal end.
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Gephyrin immunoreactive appositions, a proxy for dendrodendritic synapses along mitral
cell secondary dendrites, appear in clusters with intervening membrane devoid of
synapses. The absolute, or linear, synaptic density is constant along the length of
dendrites. Yet when expressed as a function of surface area, the synaptic density
increases distally as dendrites taper toward the terminal end.
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An individual mitral cell in the olfactory bulb filled with neurobiotin (green). The slice was subsequently
stained with gephyrin (red, a post-synaptic marker that serves as a proxy to identify dendrodendritic
synapses) and DRAQS5 (blue, nucleic counterstain to delineate the layers of the olfactory bulb). Gephyrin
immunoreactivity is uniformly distributed throughout the external plexiform layer, where the secondary
dendrites of mitral cells are located. However, analysis of gephyrin distribution along individual mitral cell
secondary dendrites revealed that the density of gephyrin increases distally as dendrites taper away from
the cell body.
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Cover image caption

An individual mitral cell in the olfactory bulb filled with neurobiotin (green). The
slice was subsequently stained with gephyrin (red, a post-synaptic marker that
serves as a proxy to identify dendrodendritic synapses) and DRAQ5 (blue, nucleic
counterstain to delineate the layers of the olfactory bulb). Gephyrin
immunoreactivity is uniformly distributed throughout the external plexiform layer,
where the secondary dendrites of mitral cells are located. However, analysis of
gephyrin distribution along individual mitral cell secondary dendrites revealed that
the density of gephyrin increases distally as dendrites taper away from the cell
body.
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