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ABSTRACT 

 Inorganic mercury is a major environmental contaminant. The primary site of mercury-

induced injury is the kidney due to the uptake of Hg
(2+)

-conjugated organic anions in the 

proximal tubule, primary across the organic anion transporter 1 (Oat1) at the basolateral 

membrane. At the luminal side, mercuric ions are eliminated by the multidrug resistance-

associated protein 2 (Mrp2). It was described that furosemide treatment induces up-regulation of 

Oat1 renal expression. As novel preventive and therapeutic strategies based in pharmacological 

manipulation of drug transporters are emerging, this study was designed to evaluate the impact 

of furosemide modulation of Oat1 on the nephrotoxicity induced by HgCl2. Wistar rats were 

treated with furosemide (6 mg/100 g/ day, s.c.) during 4 days or with HgCl2 (4 mg/kg, i.p.) 18 h 

before the experiments or with furosemide during 4 days before the HgCl2 injection. Furosemide 

treatment improved HgCl2-induced tubular injury as assessed by urinary alkaline phosphatase 

activity, urinary glucose, Oat5 urinary excretion and histopathological studies. Besides, 

administration of furosemide enhanced mercury urinary excretion, reduced mercury total renal 

accumulation and increased Mrp2 renal expression. In summary, furosemide improves HgCl2-

induced proximal tubule injury up-regulating mercury transporters and thus, increasing renal 

elimination of the mercuric ions. Hence, pharmacological manipulation of mercury transporters 

with furosemide might be a preventive strategy to reduce mercury toxicity. 

 

Keywords: Oat1, Mrp2, acute kidney injury, mercuric chloride, furosemide  
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1.-Introduction 

 

Mercury is a highly toxic metal that is widely distributed in the environment. Somehow, the 

entire population is exposed to some form of mercury primarily through drinking water, food or 

occupational exposure
1,2

. It has been reported that high levels of mercury exposure may occur 

via the use of skin lightening beauty creams, soaps and herbal drugs
3,4

. The toxic effects of 

mercury vary with the different chemical forms of mercury, the dose and the rate of exposure
2,5

. 

Due to the significant presence of mercury and its compounds in the environment, the challenge 

is to take advantage of their usefulness while reducing the impact of their adverse health effects. 

To achieve this, it is necessary to know and understand not only the molecular and cellular 

mechanisms by which mercury causes its toxicity, but also how these mechanisms are regulated. 

Inorganic species of mercury are, by far, the more nephrotoxic. Inorganic mercury 

accumulates mainly in the kidneys causing acute kidney injury (AKI)
6,7

. The renal proximal 

tubule cells are the primary target site where highly reactive mercuric ions (Hg
2+

) rapidly 

accumulate and induce cell injury by binding and interacting with complexes of protein- and 

non-protein thiols
7
. At the basolateral plasma membrane of renal cells, Hg

2+
 gains access from 

the peritubular blood into the intracellular compartment primary across the organic anion 

transporter 1 (Oat1)
 8

.
 
Oat1 mediates the transport of many compounds including endogenous 

substances and exogenous substances such as various anionic drugs (as diuretics, antiviral agents 

and β-lactamic antibiotics) and environmental compounds
9
. Bridges et al.

10
 have described that 

multidrug resistance-associated protein 2 (Mrp2) plays an important role in the renal cellular 

elimination and secretion of mercuric ions in rats. 

Torres et al.
11

 have demonstrated, using Oat1 knock-out mice, that HgCl2 induced AKI is 

mediated mainly by Oat1. In addition, since female rats express lower levels of renal cortical 

Oat1 than males
12-14

,
 
Hazelhoff et al.

15
 have recently observed that mercury-induced renal 

damage is reduced in female rats as compared with males. Currently, pharmacological 

modulation of drug transporters are emerging as preventive and therapeutic strategies
16,17

. Based 

on these, Oat1 down-regulation could be a therapeutic strategy to reduce HgCl2-induced 

nephropathy. Nevertheless, the down-regulation of Oat1 would involve a decrease in renal 

elimination of mercuric ions causing their accumulation in the organism and the metal toxicity 

increase in other tissues. One alternative could be the up-regulation of Oat1 to increase renal 
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uptake of mercuric ions and hence, their urinary elimination. In this regard, a rise in Oat1 protein 

abundance has been described in rat kidney following furosemide treatment, suggesting that 

Oat1 may be up-regulated in vivo by substrate stimulation
18,19

. Therefore, the present study was 

designed to evaluate the impact of furosemide modulation of Oat1 on the nephrotoxicity induced 

by HgCl2.  

 

2.-Results and Discussion 

As shown in Figure 1, Oat1 abundance in renal plasma membranes increased after treatment 

with furosemide during 4 days as previously described
18

. 

As a consequence of the diuretic action of furosemide, the urinary volume was enhanced in 

rats from FS group when compared with rats from C group (7.5 ± 0.6 µL/min/100 g vs 2.6 ± 0.4 

µL/min/100 g, P˂ 0.001). Moreover, HgCl2 induced a decrease in urinary volume as previously 

described
15

 (1.3 ± 0.3 µL/min/100 g, P˂0.05 vs C group) and the pretreatment with furosemide 

was able to preserve urinary volume within control values (3.5 ± 0.7 µL/min/100 g). 

In Hg rats, plasma urea, creatinine levels and proteinuria were markedly increased with 

respect to control rats (Figure 2). Moreover, creatinine clearance was lower in HgCl2-treated rats 

than in control rats, indicating a reduction in the glomerular filtration rate. These results 

corroborate the glomerular damage induced by the dose of HgCl2 employed. The pretreatment 

with furosemide was not able to reverse HgCl2-induced glomerular damage. 

Traditional parameters of tubular injury as urinary alkaline phosphatase activity and glucose 

urine concentration were measured and related to urinary creatinine levels. As shown in Figure 

3A and Figure 3B, the alkaline phosphatase activity and the urinary glucose were only 

significantly increased in Hg rats. Pretreatment with furosemide returned these tubular 

parameters to control values. 

The concentrations of urinary parameters were related to urinary concentration of creatinine in 

order to correct variations in urine production as previously described
15,20-24

. Individual 

measurements of urinary parameters are insufficient because normal physiological variations in 

urinary water excretion can dilute or concentrate urinary proteins, enzymes and transporters. 

Creatinine is excreted in urine at relatively constant rates; therefore it can be used to normalize 

urinary excretion of a particular parameter. Although creatinine had been described as a substrate 

for a number of transporters in the solute carrier superfamily expressed in renal proximal tubules, 
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the predominant pathway mediating creatinine secretion have been recently elucidated
25,26

. 

Vallon et al.
 25

 found that mouse Oat1 and mouse organic anion transporter 3 (Oat3) can 

transport creatinine in vitro, but with a relatively low affinity, and that Oat3-knockout mice had 

blunted creatinine secretion in vivo, postulating a contribution of Oat3 to the renal secretion of 

creatinine in mice. Lepist et al.
26

 have recently demonstrated that organic anion transporter 2 

(Oat2), organic cation transporter 2 (Oct2) and organic cation transporter 3 (Oct3) transport 

creatinine and that at physiologic creatinine concentrations, the specific activity of Oat2 transport 

was over twofold higher than Oct2 or Oct3, establishing Oat2 as a likely  relevant creatinine 

transporter. Lepist et al.
 26

 did not observed Oat3 and Oat1 dependent transport of creatinine. 

Considering the results previously described, the increase in Oat1 protein expression induced by 

furosemide, should not alter creatinine renal handling. In this connection, we observed that there 

was no statistically difference between excreted load of creatinine (ug/min/100 g b.w.) in Control 

(C) and in furosemide treated (FS) rats (3.0 ± 0.1 vs 3.3 ± 0.2, respectively), indicating that the 

up-regulation of Oat1 protein expression induced by furosemide does not modify urinary 

creatinine excretion and that creatinine can be used as an appropriate marker for normalization of 

urinary parameters also in our experimental groups. 

We have been pioneers in detecting the organic anion transporter 5 (Oat5) in urine and we 

have recently postulated that the urinary excretion of Oat5 is an early biomarker of proximal 

tubular damage in several models of renal and extra-renal injury
20-24

. Oat5 is located in the apical 

membranes of proximal tubule S3 segment where it functions as a dicarboxylate/organic anion 

transporter and is excreted in urine by the exosomal pathway
24

. Following treatment with HgCl2, 

an increase of urinary Oat5 abundance was observed in Hg and FS-Hg rats (Figure 3C), but this 

increase was significantly attenuated by pretreatment with furosemide.  

Histopathological studies (Figure 4A) revealed that kidneys from animals treated with a single 

dose of HgCl2 presented vacuolated cells, cellular detachment, disrupted brush border 

membranes, focal tubular dilatation and necrosis as previously described
15,22,27-29

. The 

microscopic changes in renal tubules from rats pretreated with furosemide were less significant 

than those observed in rats that received only the nephrotoxic dose of HgCl2 as indicated by 

cortical tubular injury scores obtained (0.56 time below Hg rats, P ˂ 0.001) (Figure 4B). 
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The pretreatment with furosemide significantly reduced the renal accumulation of mercury 

after HgCl2 administration (Figure 5A), and the excretion of mercury in urine was markedly 

greater in FS-Hg rats that in Hg rats (Figure 5B). 

After observing these results, and considering that Mrp2 plays an important role in the renal 

cellular elimination and secretion of mercuric ions in rats
10

, we also decided to evaluate Mrp2 

protein expression in renal plasma membranes following the 4 days of furosemide treatment. As 

shown in Figure 6, Mrp2 renal abundance was increased in FS 4d rats. 

Eventhough mercury has been recognized as a hazardous pollutant, various forms of this 

metal continue to be added to the pool of environmental mercury. Primary anthropogenic sources 

of mercury have been: fossil fuels combustion, cement production, industrial processes, 

incineration of chemical or medical wastes and mining operations
1
.
 
The major effect of exposure 

to inorganic mercury compounds is renal damage, because kidneys are the primary targets of 

mercuric ions accumulation. More specifically, mercuric ions accumulate almost exclusively 

along the S1, S2 and S3 segments of the proximal tubule
7,30,31

. To our knowledge there are no 

specific preventive and therapeutic strategies for the treatment of mercury nephrotoxicity.  

The renal proximal tubules have a wide variety of transporters with overlapping substrate 

specificities that cooperate in basolateral uptake and luminal excretion. Frequently, unexpected 

changes in plasma metabolite levels and/or nephrotoxicity are consequence of clinically 

significant interactions that involve these multiple carriers
32,33

. At present, novel preventive and 

therapeutic strategies based in pharmacological manipulation of drug transporters are 

emerging
16,17

. 

In rats, the administration of HgCl2 is an established model of nephrotoxicity where it dose-

dependently affects the epithelial cells lining the pars recta (S3 segment) of the proximal 

tubules
7,30,31

.
 
The uptake of mercuric ions by these cells is primarily across Oat1 in the 

basolateral plasma membrane and via amino acid transporters in the luminal plasma 

membrane
7,8

. Oat1 is involved in the transport of organic anions of pharmacological and 

physiological significance at the basolateral membrane of renal tubular cells. Oat1 supports 

organic anion/α-ketoglutarate exchange
34,35

. Several recent studies have demonstrated that Mrp2 

plays an important role in the cellular elimination and secretion of certain mercuric species
10, 

31,36
. Mrp2 is localized exclusively in the apical plasma membrane of proximal tubule epithelial 

cells. Mrp2 is not present in renal exosomes
37

 and it is involved in the organic anions transport of 
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a wide variety of potentially toxic endo- and xenobiotics in the form of amphiphilic anionic 

conjugates
38

. 

We have recently demonstrated that most of the renal injury induced by HgCl2 was abolished 

following HgCl2 treatment of Oat1 knock-out mice
11

. Thus, HgCl2 induced AKI was found to be 

mediated mainly by Oat1. Our assumption was that reducing the renal tissue levels of mercury 

by pharmacological manipulation of Oat1 expression could be a beneficial and specific 

preventive modality for mercury nephrotoxicity that would alleviate the renal damage. In this 

sense, it has been described that repeated administration of furosemide causes increase in Oat1 

protein abundance in rat kidney
18,19

. The authors proposed that furosemide up-regulates Oat1 

protein expression by in vivo substrate stimulation 
18,19

. The diuretic administration may have a 

direct stimulatory effect on Oat1 protein synthesis since sucrose water loading, which also 

increases urine volume, failed to increase Oat1 protein abundance. Besides, furosemide 

selectively increased Oat1 protein but not Na-K-ATPase protein, suggesting that furosemide may 

have a direct stimulatory effect on Oat1 protein synthesis
18,19

.
 
 

In the present study, we corroborated that following treatment with furosemide, the Oat1 

protein expression significantly increased in renal plasma membranes.  

In our experimental model of HgCl2-induced nephrotoxicity, renal damage was assessed in 

part by both urea and creatinine plasma levels, creatinine clearance and urinary proteins
39

. As 

part of HgCl2-induced nephropathy, a decrease in glomerular filtration rate is observed probably 

by vasoconstriction of the afferent and /or efferent arterioles. However, the exact mechanisms 

are unknown, they are likely complex and involve a number of factors
40

. In this regard, the 

concentration of both creatinine and urea in plasma increases due to the significant decrease in 

the glomerular filtration rate. Therefore, the assay of plasma creatinine and plasma urea may be 

used as indicators of mercury-induced impaired glomerular function
7,41

. After treatment with 4 

mg/kg b.w., i.p of HgCl2 a significant decrease in the glomerular filtration rate and high values of 

creatinine in plasma, urea in plasma and urinary proteins were observed. The pretreatment with 

furosemide (6 mg/100 g b.w./day, s.c, 4 days) did not improve the glomerular damage induced 

by the dose of HgCl2.  

When tubular injury is induced by mercury, cells along the proximal tubule undergo several 

degenerative modifications and lose some of their brush border membrane. In addition, the 
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capacity for the reabsorption of filtered plasma solutes and water is largely reduced after several 

proximal tubules have become functionally compromised by the toxic effects of mercury
1, 40

. 

In this study, different parameters were used as markers of renal proximal tubules injury, as 

urinary alkaline phosphatase activity, urinary glucose concentration and Oat5 urinary excretion. 

Following treatment with the nephrotoxic dose of HgCl2, impairment in the function of renal 

proximal tubules was observed, as previously described
7,15,23,40

.
 
Treatment with furosemide 

before the administration of the nephrotoxic dose of HgCl2 was able to improve proximal tubules 

damage as assessed by alkaline phosphatase activity in urine, urinary glucose and urinary 

excretion of Oat5 and histophatological studies. 

In animals pretreated with furosemide, the total mercury accumulation in kidney (µg/g tissue) 

was lower and the urinary excretion of mercury was higher, respectively, as compared with 

animals that received only the dose of HgCl2. Because of the important role of Mrp2 in the 

transport of mercuric ions and the greater urinary excretion of mercury observed in rats 

pretreated with furosemide, we decided to evaluate Mrp2 protein expression. We demonstrated 

that treatment with furosemide induces Mrp2 renal expression.  

The unchanged drug is the main pathway of renal elimination of furosemide but its metabolic 

clearance via glucuronidation is also very significant in the kidney
42-44

. It has been suggested that 

furosemide is actively transported by Mrp2
44

. Accordingly, we propose that the potential 

increase mechanism in Mrp2 protein expression by furosemide is via direct substrate stimulation, 

similar to the proposed mechanism by Kim et al.
18

 for the furosemide-induced up-regulation of 

Oat1 protein. In addition, and to our knowledge, this is the first report regarding in vivo 

modulation of Mrp2 renal expression by furosemide administration. 

The results from this work indicate that in rats pretreated with furosemide, the enhanced Oat1 

expression increases the uptake of mercuric ions into the tubular cells, whereas the highest 

expression of Mrp2 increases excretion of mercuric ions into the tubular lumen, thus decreasing 

total mercury accumulation in kidney, and hence its renal tubular toxicity. The protection 

afforded by furosemide is due to the increase in the tubule secretion of mercury, due to the up-

regulation of Oat1 and Mrp2 protein expression. In this connection, it has been described that 

approximately 95-99 % of the mercury in plasma is bound to proteins and consequently its 

glomerular filtration is very low. So, the urinary mercury represents a pool of mercury that has 

been secreted from the blood into the tubular lumen by a transepithelial mechanism
7,8

. On the 



 

 11 

other hand, furosemide was not able to prevent the decrease in the glomerular filtration rate 

observed in HgCl2 treated rats as shown through the evaluation of creatinine clearance (Figure 

2C), so it is not expect any change in the low mercury glomerular filtration between both 

experimental groups. 

Since pathological changes induced by mercury would be hard to revert, the acute mercury 

renal toxicity model is useful to study possible strategies aimed at preventing the onset of 

mercury toxicity. This study is a pioneering report to prevent mercury nephrotoxicity. Therefore, 

further studies are warranted in the future to explore several uncertain and unresolved issues, for 

instance, drugs that up-regulate renal Oat1 and Mrp2 much more potently than furosemide could 

become new clinical tools to prevent nephrotoxic AKI induced by mercury. Additionally, the 

dose of furosemide used in this study is equivalent to a dose of 9.8 mg/kg b.w./day
45

 in humans, 

that is included in the furosemide dosage range (0.3-114 mg/kg b.w./day) currently employed in 

humans 
46,47

. So, the results in the present work also remark the clinical relevance of considering 

the up-regulation of Oat1 and Mrp2 in patients receiving chronic administration of furosemide 

when other therapeutic drugs, that are substrates of these transporters, are concomitantly 

administered.  

 

3.-Experimental 

 

3.1.-Experimental Animals 

Adult male Wistar rats (aged 110–130 days) were used throughout the study. All animals were 

allowed free access to a standard laboratory chow and housed at constant temperature and 

humidity with regular light cycles (12 h) during the experiment. All experiments were conducted 

according to National Institutes of Health (NIH), Guide for the Care and Use of Laboratory. All 

experimental procedures were approved by the Faculty of Biochemical and Pharmaceutical 

Sciences (UNR) Institutional Animal Care and Use Committee. 

 

3.2.-Experimental Protocols 

Treatments: Animals were treated with furosemide (6 mg/100 g b.w./ day, s.c.) as previously 

described by Kim et al.
18 

for four consecutive days and/or with a single injection of HgCl2 (4 
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mg/kg b.w., i.p.) on the 4
th

 day. Experiments were performed after 18 h of HgCl2 injection as 

previously described
7,11,15,27

.  

Experimental groups: The animals were randomly divided into four experimental groups of four 

animals each. Control animals (Control group, C), rats treated with furosemide (furosemide 

group, FS), rats receiving HgCl2 (HgCl2 group, Hg), and animals treated with furosemide and 

with HgCl2 (furosemide + HgCl2 group, FS-Hg). 

C and Hg groups also received the furosemide vehicle (600 µL/100 g b.w, s.c.) for four 

consecutive days. C and FS groups also received HgCl2 vehicle (100 µL saline/ 100 g b.w.), 18 h 

before the experiments. 

Rats were provided with two separate bottles of drinking water, one containing 0.8% NaCl 

and 0.1 % KCl, and the other containing tap water. All the animals were placed in metabolic 

cages in order to collect the urine 18 h before the experiments. Urinary volume was determined 

by gravimetry. 

Different sets of experimental animals were used for: biochemical determinations, 

histopathological studies and preparation of plasma membranes from kidneys for Western 

blotting studies. 

The day of the experiment, all the animals were anesthetized with sodium thiopental (70 

mg/kg b.w., i.p.). The collection and processing of renal tissue samples was different depending 

on the type of study performed. 

Besides, two different experimental groups were used for the evaluation of Oat1 and Mrp2 

protein expression in total renal plasma membranes on the 4
th

 day (prior to the administration of 

HgCl2) by immunoblotting technique: control (control 4d, n=4): rats that received furosemide 

vehicle (600 µL saline/100 g b.w./day, s.c) for 4 days; furosemide (FS 4d, n=4): rats that 

received furosemide (6 mg/100 g b.w. /day, s.c.) during 4 days. On the 4
th

 day, these animals 

were anesthetized and the renal tissue samples were collected and processed.  

 

3.3.-Biochemical Determinations 

On the day of the experiments, blood samples were obtained by cardiac puncture and blood 

plasma was separated by centrifugation (1,000 x g for 10 min). Urine samples were centrifuged 

at 1,000 x g for 10 min to remove cell debris. Plasma samples were used to measure urea and 

creatinine levels [Cr]p. The urine samples were used for analyses of alkaline phosphatase 
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activity, creatinine [Cr]u, protein and glucose concentrations and Organic anion transporter 5 

(Oat5) abundance. Plasma urea and creatinine levels, as well as urine creatinine, protein and 

glucose concentrations and alkaline phosphatase activity were determined employing 

commercial kits (Wiener Laboratory, Rosario, Argentina). Creatinine clearance was calculated 

employing the following formula: [Cr]u × Urine Volume/[Cr]p. Urine Volume is expressed in 

mL/min/100 g b.w. Total mercury determination in kidney and urine samples was performed by 

cold vapor atomic absorption as previously described by Trebucobich et al.
27

. 

 

3.4.-Preparation of Total Plasma Membranes from Kidneys 

The preparation of total plasma membranes obtained from entire kidneys of each 

experimental group were performed by differential centrifugation according to the method 

described by Jensen and Berndt
48

, with the modifications previously reported by our 

laboratory
12,15

.
 
 

Aliquots of the membranes were stored immediately at −80 °C for 2 weeks. Each preparation 

represented renal tissues from four animals.  

 

3.5.-Electrophoresis and Immunoblotting 

The electrophoresis and immunoblotting studies were performed as previously described by 

Hazelhoff et al.
15

. Total plasma membranes (18 µg of protein/lane) and urine (10µL/lane) 

samples were boiled for 3 min in the presence of 1% 2-mercaptoethanol/ 2% sodium dodecyl 

sulphate (SDS). Proteins were separated through 8.5% SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE), and then electroblotted to a pure nitrocellulose membrane (NC membrane) (Trans-

Blot
®
 Transfer Medium, Bio Rad Laboratories, Hercules, CA, USA). To verify equal protein 

loading and transfer between lanes, Ponceau Red and antibody against human -actin were used 

as previously reported
15,20,21,27

.
 
The membranes were incubated overnight at 4 °C with a 

commercial rabbit polyclonal antibody against rat Oat1 or a rabbit polyclonal antibody against 

rat Oat5 as previously described
15,20

, or a commercial mouse polyclonal antibody against rat 

Mrp2 or a commercial mouse monoclonal antibody against human -actin. Blots were processed 

for detection using a commercial kit (ECL Plus Western Blotting Detection Reagents; 

Amersham, Buckinghamshire, UK). Kaleidoscope Prestained Standards of molecular mass were 

employed (Bio Rad Laboratories, Hercules, CA, USA). A densitometric quantification of the 
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Western blotting signal intensity of membranes was performed using the Gel-Pro Analyzer 

(Media Cybernetics, Silver Spring, MD, USA) software. The abundances of Oat1 and Mrp2 were 

normalized to -actin and considered as percentage of the mean control value for each gel. 

 

3.6.-Histopathological Studies 

Histopathology of kidneys was performed with hematoxylin-eosin as previously described
22

, 

after perfusing the kidneys 0.01 M NaIO4, 0.075 M lysine, 0.0375 M phosphate buffer, with 2 % 

paraformaldehyde, pH 6.20. Ten cortical high-power fields (×400) were examined at random by 

a blinded observer. The tubular injury (e.g. tubular dilatation/flattening, tubular 

degeneration/vacuolization and acute tubular necrosis) was evaluated in hematoxylin-eosin 

sections. Alterations in affected tubules were graded as follows: 0, less than 5%; 1, 5–33%; 2, 

34–66% and 3, over 66%
 
as previously described

 49,50
. Images were taken with an Olympus 

Coolpix-micro digital camera fitted on a CX-35 microscope (Olympus, Japan). 

 

 

3.7.-Materials 

Chemicals were purchased from Sigma (St. Louis, MO, USA), analytical grade pure. The 

polyclonal antibody against Oat1 and the monoclonal antibody against human -actin were 

purchased from Alpha Diagnostic International (San Antonio, TX, USA) and the polyclonal 

antibody against Mrp2 from Abcam (Cambridge, MA, USA). The polyclonal antibody against 

Oat5 was kindly supplied by Prof. N. Anzai (Department of Pharmacology and Toxicology, 

Dokkyo Medical University School of Medicine, Japan). The Kaleidoscope Prestained Standards 

of molecular mass were purchased from Bio Rad Laboratories (Hercules, CA, USA). 

 

3.8.-Statistical Analysis 

Statistical differences between groups were evaluated using the unpaired Student´s t-test or 

multiple comparisons with one way ANOVA followed by the Newman-Keuls test. For 

densitometry of immunoblots, samples from kidneys of FS, Hg and FS-Hg rats were run on each 

gel with corresponding control kidneys. Besides, renal membranes from FS 4d were run on each 

gel with the corresponding control 4d ones. 
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4.-Conclusion 

The up-regulation of the renal expression of Oat1 and Mrp2 by repeated administration of 

furosemide improves the proximal tubule damage induced by HgCl2. These results provide new 

evidence that achieving pharmacological manipulation of mercury transporters may be a 

preventive strategy to reduce its toxicity. Because furosemide has been used for a long time with 

high safety and tolerability profile, induction of Oat1 and Mrp2 in the kidney in patients with 

nephrotoxicity caused by mercury may be a safe and new preventive tool to excrete mercury and 

to reduce renal tubule injury.  
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Figures Legends 

 

Figure 1. Western blotting for Oat1 in plasma membranes (18 μg proteins) from kidneys of 

control 4d and FS 4d rats. The anti-Oat1 antibody labeled a specific protein band of 70-75 

KDa. Proteins are separated by SDS-PAGE and blotted to nitrocellulose membranes. The 

results are expressed as percentages. The mean of control 4d levels was set as 100%. 

Results are expressed as mean values  SEM from experiments carried out in four different 

preparations for each experimental group. (*) P <0.05. Kaleidoscope Prestained Standards 

of molecular mass corresponding to bovine serum albumin (89.4 kDa) and to carbonic 

anhydrase (38.9 kDa) are indicated on the right of the figure. 

 

Figure 2. Urea (A) and creatinine (B) plasma levels, creatinine clearance (C) and urinary 

proteins (D) in C, Hg, FS and FS-Hg rats. Results are expressed as mean values  SEM 

from experiments carried out in four different preparations for each experimental group. 

P <0.05. (a) versus C, (b) versus Hg, (c) versus FS, (d) versus FS-Hg. 

 

Figure 3. Alkaline phosphatase urinary activity (A), urinary glucose (B) and Oat5 

abundance in urine (C) in C, Hg, FS and FS-Hg rats. Results are expressed as mean values 

 SEM from experiments carried out in four different preparations for each experimental 

group. In figure 3C, the results are expressed as percentages and the mean of C levels was 

set as 100%. P <0.05. (a) versus C, (b) versus Hg, (c) versus FS, (d) versus FS-Hg.  

 

Figure 4. A) Representative micrographs of hematoxylin/eosin-stained sections of C, Hg, 

FS and FS-Hg rat kidneys. Photos are representative of samples obtained from four rats 

from each experimental group. In group Hg: vacuolated cells (arrow head) cellular 

detachment and disrupted brush border membranes were observed (arrows). Group FS-Hg 

showed less microscopic damage than group Hg. Bars: 40 µm. B) Tubular injury score; the 

scores ranges from 0 for completely normal histology to 3 for maximal and widespread 

injury. P <0.001. (a) versus C, (b) versus Hg, (c) versus FS, (d) versus FS-Hg.  

 

Figure 5. Total mercury in kidney (A) and urine excreted load of mercury (B) in Hg and 

FS-Hg rats. Results are expressed as mean values  SEM from experiments carried out in 

four different preparations for each experimental group. (*) P <0.05. 
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Figure 6. Western blotting for Mrp2 in plasma membranes (18 μg proteins) from kidneys 

of control 4d and FS 4d rats. The anti-Mrp2 antibody recognized a specific protein band of 

175 KDa. Proteins are separated by SDS-PAGE and blotted to nitrocellulose membranes. 

The results are expressed as percentages. The mean of control 4d levels was set as 100%. 

Results are expressed as mean values  SEM from experiments carried out in four different 

preparations for each experimental group. (*) P<0.05. Kaleidoscope Prestained Standards 

of molecular mass corresponding to myosin (206.4 kDa), β-Galactosidase (127.5 kDa) and 

to carbonic anhydrase (38.9 kDa) are indicated on the right of the figure. 

 

 


