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Abstract
Using the large-N limit of the t–J model and also allowing for phonons and the electron–phonon
interaction, we study the isotope effect α for coupling constants appropriate for YB2C3Oy. We
find that α has a minimum at optimal doping and increases strongly (slightly) towards the
underdoped (overdoped) region. Using values for the electron–phonon interaction from the local
density approximation we get good agreement for α as a function of Tc and doping δ with recent
experimental data in YB2C3Oy. Our results strongly suggest that the large increase of α in the
underdoped region is (a) caused by the shift of electronic spectral density from low to high
energies associated with a competing phase (in our case a charge density wave) and the
formation of a gap, and (b) compatible with the small electron–phonon coupling constants
obtained from the local density approximation. We propose a similar explanation for the
anomalous behavior of α in Sr-doped La2CuO4 near the doping 1/8.
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1. Introduction

The isotope effect on the superconducting transition tem-
perature Tc is one of the hallmarks of phonon-induced
superconductivity in conventional superconductors [1]. Many
experiments showed that the measured isotope coefficient α
in these systems is near the theoretical value of 1/2, con-
firming the important role played by phonons [2]. The isotope
effect in high-Tc oxides differs from that in conventional
superconductors [3, 4]. Similar to Tc, α depends strongly on
doping in this case. At optimal doping, i.e., where Tc assumes

its largest value, α turns out to be very small and of the order
of 0.05. Decreasing the doping, Tc decreases and vanishes
near the onset of long-range antiferromagnetism. At the same
time α increases monotonically, reaching low doping values
of about 1. Increasing the doping from its optimal value, Tc
decreases monotonically down to zero. The behavior of α in
this region is presently not as clear as in the underdoped
region but seems to be constant or slightly increasing with
doping [3, 4]. The above characterization of α applies in
particular to the well-investigated Y- and Bi-based high-Tc
oxides. The situation in Sr-doped La2CuO4 (LSCO) is
somewhat different. Large values of α occur near the doping
1/8, where Tc is suppressed [5, 6].

A nonzero isotope coefficient proves the involvement of
phonons and the electron–phonon (EP) interaction in the
superconducting state. Since α assumes values near 1 in high-
Tc oxides, i.e., values which are larger than in all conventional
superconductors, it has been concluded [3, 7, 8] that phonons
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play an important role in the high-Tc phenomenon. As a
result, theories with a strong EP coupling and polarons have
been used to explain the observed α [9–11]. On the other
hand the experiments show that very large values of α occur
in high-Tc oxides if a competing phase with a gap or pseu-
dogap is present [4]. Theories of this kind [12, 13] may
explain α without assuming a strong EP coupling. Whether
the EP coupling is strong or not in cuprates is of fundamental
interest. Angle-resolved photoemission spectra show large
electronic self-energies [14, 15], but it is not easy to decide
whether they are caused by a strong coupling to phonons [16]
or to spin excitations [17]. α, however, is only sensitive to
phonons and not to spin excitations. A convincing explana-
tion of α thus could also contribute to the presently con-
troversial discussed question of the role played by phonons in
high-Tc oxides.

In this paper we show that the theory of [13] may explain
the recently reported doping behavior of α in YBa2Cu3Oy

(YBCO) [18]. For this aim we review part of our theory and
give new expressions and discussions for α. In our scenario
the large increase in α in the underdoped regime can be
explained in the presence of a d charge-density wave (CDW)
state using small EP interaction constants, as calculated in the
local density approximation (LDA) [19–21].

2. Derivation of the expression for α

Our calculation of α is based on the Hamiltonian H H ,t J ep+-

where Ht J- is the t–J model and Hep represents the EP
interaction. Ht J- is given by,
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t tij = t( )¢ is the hopping integral between the first (second)
nearest-neighbor sites on a square lattice; J and Vc are the
exchange interaction and the Coulomb repulsion, respec-
tively, between nearest-neighbor sites. cĩ

†
s and cĩs are creation

and annihilation operators for electrons with spin σ

( ,s =  ), respectively, excluding double occupancies of
sites. n c ci i i˜ ˜†å= s s s is the electron density and Si


the spin

operator. i j,< > denotes a sum over pairs of sites i and j.
In the framework of the large-N expansion, the spin

index σ in (1) is extended to N components, the coupling
constants scaled as t t N2 , t t N2 ,¢  ¢ J J N2 , and
V V N2 ,c c and the large N limit is considered [22]. As a
result, the quasiparticle dispersion is given by k 2( ) = -
t rJ k k tcos cos 4 cosx y( )( ( ) ( ))d d+ + - ¢ k kcos ,x y( ) ( ) m-
where r N q f q1 cos .s xq

( ) ( ( ))å= f is the Fermi function,

δ the doping away from half-filling, μ the chemical potential,
and Ns the number of sites. In the following we use the lattice
constant a and t as length and energy units, respectively. In
addition, we take t t 0.35¢ = - and J t 0.3,= which are
typical values for cuprates.

As discussed previously [22] the above model shows
instabilities with respect to a d CDW [23, 24] and a super-
conducting phase. The corresponding order parameters are
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T is the temperature and i nw a fermionic Matsubara frequency.
g12 and g13 are the elements (1,2) and (1,3), respectively, of
the 4×4 Green’s function
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with the abbreviation k k Q,¯ = - where Q ,( )p p= is the
wave vector of the CDW. In (2) and (3) we have used the fact
that the most stable solutions for k( )D and k( )F have d-wave
symmetry; i.e., k k ,( ) ( )gD = D and k k( ) ( )gF = F with

k kk cos cos 2.x y( ) ( ( ) ( ))g = - In (3) J J V ,c˜ = - where we
have introduced a Coulomb repulsion V J0.2c = between
nearest-neighbor sites to prevent an instability of the CDW
phase towards phase separation at low doping.

For convenience we have reproduced in figure 1 previous
results [13] for Φ and Δ at T = 0, and for Tc and T ,* as a
function of doping. T* is the temperature where the CDW
phase develops. The phase diagram is qualitatively similar to
the experiments; i.e., there is a dome-like behavior for Tc with
a maximum value around 0.16d ~ where the CDW appears.
Similarly as in experiments [25, 26], Φ and Δ compete and
coexist with each other at low temperatures. Using
t = 400 meV, the resulting values for Tc and T* compare
well with the experimental ones.

Figure 1. Zero-temperature order parameters Φ andΔ and the critical
temperatures T* and Tc as a function of doping.
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Next we discuss the phonon-induced interaction Hep

between electrons, which can be written in the static limit as,
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The prime at the summation sign means that
k k k k‴- ¢ +  - must be equal to a reciprocal lattice
vector. In the following the d-wave part of V k k( )- ¢ will be
important. It is obtained by replacing V k k( )- ¢ by

V k k4 ( ) ( )g g ¢ which defines the d-wave coupling constant
V for a phonon-induced nearest-neighbor interaction.

An expression for α has been given in [13]. There it has
also been shown that two simplifications can be made without
changing the results much. First, one may neglect the influ-
ence of phonons on T .* Secondly, the EP interaction yields a
contribution to the pairing but also one to the quasi-particle
weight Z. If the general question is studied of whether pho-
nons increase or decrease Tc, both effects are present and
compete with each other. Numerical calculations indicate that
generically the second effect dominates so that Tc decreases
[27]. Our aim, however, is not to determine the change in Tc
when the EP interaction is turned on but when the ionic mass
M is changed. Writing Z 1 ,sl= + it is well known that the
dimensionless EP coupling constant in the s-wave channel, ,sl
is independent of M. The same is then true also for Z. Since
there is good evidence that the EP coupling in cuprates is
rather small [21], we may even use in the following the
approximation Z = 1.

Introducing a phonon cutoff 0w and the cutoff function
,n n0( ∣ ∣)w wQ - the gap equation reads
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The condition for Tc can be written as,
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F V J F ,22 12˜= and ψ is the digamma function. The d-wave
projected density of electronic states is given by
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Figure 2 shows Nd ( )w as a function of ω for the doping
0.085d = and several temperatures T. For T T* the density

is dominated by a sharp peak at about 0.04,w ~ corre-
sponding to the van Hove peak in the normal state.
Decreasing T, this single peak splits into two peaks; both
move towards higher energies and come closer to each other.
This behavior can be understood by noting that the main
contribution in the sum over k comes from the surroundings
of the X-point. Then the first term under the square root in
(11) is in general much smaller than the second one, and the
square root may be expanded, yielding for positive energies
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Thus one expects that Nd ( )w shows a doublet with a mean
energy k k( ) ( ) + F+ and a splitting energy k k2 .2 ( ) ( ) F-
With increasing Φ the splitting decreases in agreement with
the curves in figure 2.
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in agreement with (18) of [13].

Figure 2. Density Nd ( )w for doping 0.085d = and several
temperatures as a function of frequency ω.
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3. Results and discussion

3.1. YBCO

Figures 3 and 4 show α versus Tc and δ, respectively, for
V = 0.06 and V 0.10,= and two phonon frequencies.

0.10w = and 0.2 corresponds to the buckling and half-
breathing phonon modes in YBCO. The solid points are
experimental results from [18]. They all lie in the region
between the curves calculated with parameter values repre-
sentative for cuprates. The above choice of parameter values
for phonons is, of course, unproblematic. More controversial
may be the employed values for the EP coupling constants.
First principles calculations of total EP constants have been
described in [21]. The results are given in terms of dimen-
sionless coupling constants sl and dl for the s- and d-wave
channel, respectively. For each channel, λ and V are related
by VN 0 ,( )l = where N(0) is the density of electronic states
at the Fermi energy in the corresponding symmetry channel.
LDA calculations yield for YBa2Cu3O7 0.24sl ~ and

0.022dl ~ [21]. These values are rather small, particularly,
the value for .dl On the other hand there is good evidence
from several experiments that such small values are not
unreasonable: Angle-resolved photoemission data in LSCO
[15, 28] yielded 0.4.sl ~ Similarly, superconductivity-
induced shifts of zone center phonons are in good agreement
with calculated LDA values [29, 30] and therefore with such
small EP coupling constants. In figures 3 and 4 only EP
coupling constants in the d-wave channel enter, for which we
used V = 0.06 and 0.10, which are slightly larger than the
LDA values. They describe the experimental points some-
what better than the bare LDA values. One should keep in
mind that such adjustments (from 0.02dl ~ to 0.04dl ~ )
should be considered as minor, because we always stay in the
region of very small EP couplings.

It is worth remarking that the observed increase of α in
the underdoped region of YBCO can be quantitatively
explained not only by employing such small values for the EP

coupling constants but by noting that a reasonable agreement
between experiment and theory requires them. As discussed
above the large isotope effect found in underdoped cuprates
has been interpreted as evidence for a strong EP coupling in
these systems. From the above analysis the conclusion is quite
different: The large observed isotope shifts in underdoped
cuprates are the result of a competition of superconductivity
with another ground state which produces the pseudogap.
They can be explained using the small d-wave EP coupling
constant obtained in the LDA calculations. Figures 3 and 4
demonstrate this for the case of a d CDW state as a competing
state, but we expect similar results for other ground states, as
long as they are associated with a gap or a pseudogap.

The above calculations indicate that a pseudogap and the
associated shift of the density of states from low to high
energies are responsible for the strong increase of α in the
underdoped regime. It is, however, clear that a reduction of
N 0d ( ) alone cannot increase α as long as Nd ( )w is constant on
the scale of .0w It is therefore interesting to analyze the above
equations in more detail and to find out what exactly causes
the increase in α. For the following analytical results we will
assume that the density of states Nd ( )w can be considered
either as constant or that Tc is sufficiently low; i.e., we will
consider the overdoped or the strongly underdoped regions. It
also will be sufficient to consider the expression (16) for α,
which is valid for a weak EP coupling.

The derivative in the denominator of (16) may be
approximated as
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Figure 3. Isotope coefficient α as a function of Tc for different EP
couplings V and phonon frequencies .0w The filled circles are
experimental points from [18].

Figure 4. Isotope coefficient α as a function of doping δ for the same
parameters as in figure 3. The filled circles are experimental points
from [18].
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Let us write F12 as

F VJ F F , 1912 12
1

12
2( )˜ ( )( ) ( )= +

with

F
N

T
d tanh

2
, 20d

c
12

1

0

0 ( ) ( )( ) ⎛
⎝⎜

⎞
⎠⎟






ò=

w

F
N

T

N

d tanh
2

arctan . 21

d

c

d

12
2

0 0

0

0

( )

( ) ( )

( )

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠












ò

ò w
w

=

-

w

¥

¥

In the last term in (21) the zero-temperature limit has been
taken. The derivative F12

0w
¶
¶

acts only on the last term in F ,12
2( )

yielding

F N
d . 22d12

2

0 0 0
2 2

( ) ( )
( )




òw w
¶
¶

= -
+

¥

Inserting the above results into (16) gives

V

N

F

VJ

N

0
d . 23

d

d0 12

0 0
2 2( ) ˜

( ) ( )


òa
w

w
= -

+

¥

Numerical evaluation of (18) shows that F12 is practically
constant as a function of doping above optimal doping and
only very slowly increasing towards lower dopings. Thus we
may consider F12 in (23) as a constant. As a result we obtain
for the increase of α relative to its value 0a at optimal doping,
i.e., at the onset of the CDW,
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The above formula allows us to understand the large increase
of α in the underdoped regime. Near optimal doping N ( )
depends only weakly on frequency so that the density ratio
N N 0d d( ) ( )w and, therefore, also 0a a is near 1. Below
optimal doping the spectral weight is shifted from low to high
frequencies, which produces the pseudogap. As a result the
ratio N N 0d d( ) ( )w is large around the pseudogap, leading to
large values for .0a a Since N 0d ( ) is roughly proportional to
δ, 0a a increases monotonically with decreasing doping,
yielding values which may exceed by far the canonical BCS
value of 1/2. Taking the limit 00w  in (24), the first factor
under the integral becomes a delta function, and we obtain

1.0a a = The absence of an enhancement of α for small 0w
can easily be understood: The main part in the integral in (24)
comes from the region of small ò, well below the pseudogap,
where N 0d ( ) is small. The contribution from electronic
spectral density shifted to the frequency region around the
gap is missing, and no substantial enhancement of α can
occur. This case also shows that the reduction of N 0d ( ) due to
the formation of the gap does not cause an increase of α by
itself. Instead the shift of spectral weight from low to high
frequencies near the pseudogap is responsible for the increase
of α. For large phonon frequencies, 0a a decreases with
increasing .0w Thus one expects that 0a a as a function of 0w
first increases, passes then through a maximum, and finally

decreases. The curves in figure 5, calculated with the full
expressions for the functions F, illustrate nicely this behavior.

In the overdoped region one may assume that the density
of states Nd ( ) is constant. The approximations leading to
(24) imply then 0a a= throughout the overdoped region. A
better approximation in this region is obtained by using 0w as
the cutoff in the energy integration in F12. The two terms in
F12

2( ) cancel then exactly, and F12
1( ) can be evaluated as in the

usual BCS theory, yielding,

T2
log

1.14
. 25d

c

0 ( )
⎛
⎝⎜

⎞
⎠⎟a

pl w
=

A similar result has been first derived in [31]. For optimal
doping where Tc is highest, α shows a minimum with a value
which for T 1.14c 0w> is weakly negative. For more realistic
parameter values the logarithmic factor is about 1, and thus

.da l» The observed small values 0.050a ~ in cuprates
with the highest Tc do require similar values for dl in good
agreement with the values obtained from the LDA calcula-
tions. Our analytical expressions for α in the under- and
overdoped region used 0w as a cutoff, but one time along the
imaginary and one time along the real axis. Taking the cutoff
always along the real axis is not suitable in the underdoped
region, because if the density peak in Nd ( )w coincides with
the phonon frequency, one obtains a spurious peak in the
curve α versus δ. Using the cutoff along the imaginary axis
we never found such an artifact and therefore used this choice
of cutoff in all our numerical calculations.

The inset of figure 5 shows α versus δ, calculated without
approximations, over a large doping region. In the overdoped
region this function increases roughly as predicted by (25). A
closer look reveals, however, that both the analytic expres-
sions (24) for the underdoped regime and, to a lesser degree,
(25) for the overdoped regime do not well agree with the
numerically evaluated curves. One reason is that our model
Nd ( )w in equation (17) varies in the energy interval T0, 2 c[ ]
considerably so that the approximation proposed in that
equation is problematic. Band structure effects thus play a
role in our model, even at low energies, producing

Figure 5. Isotope coefficient α as a function of doping for V = 0.1
and several phonon frequencies ,0w demonstrating the nonmonotonic
dependence of α on .0w Inset: α over a larger doping region.
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fluctuations in the curve α versus δ if calculated with (24). In
the numerically exact calculated curves in figures 3–5, such
fluctuations are absent due to a properly carried out energy
integration in (17). Though (24) and (25) are thus not suitable
to obtain accurate values, they nevertheless explain correctly
the curves α versus δ at low and high dopings.

3.2. La- and Ba-doped La2CuO4

Our theory can also be applied to Sr- and Ba- doped
La2CuO4. La x2- BaxCuO4 shows a variety of phase transitions
near the doping 1 8d = [32]. Tc exhibits a dip between

0.1551d = and 0.095,2d = which nearly touches zero at
0.125d = [32, 33]. Between these limiting dopings a leading-

phase CO with charge stripe order extends towards higher
temperatures above the superconducting phase in a domelike
manner, touching Tc at the end points. There are additional
phases of spin stripe order or of orthorhombic or tetragonal
symmetry present, which will be disregarded in the following.
Above 1d or below ,2d Tc is decreasing with increasing dis-
tance from these points, reaching very small values near

0.25d = and 0.05, respectively. The phase diagram of the
sister compound LSCO does not contain long-ranged phases
around the doping 1/8. Nevertheless it is probable that
superconductivity competes with phases in the particle–hole
channel near this doping, because Tc shows a pronounced dip
in this region [5, 6]. Also angle resolved photoemission
experiments find in LSCO a pseudogap that sets in at around

0.20,d = and exists and increases in magnitude towards
lower dopings. The isotope coefficient in LSCO (see figure 6)
is very small at the large doping value of 0.20, where the
pseudogap forms. With decreasing δ, α first increases slightly
and then very rapidly, reaching a maximum near the doping
1/8 with a value of about 1. Decreasing δ further, α decreases
but settles down in the region of about 0.5.

In view of the above phase diagrams and the behavior of
α in LSCO, it is natural to assume that the doping dependence

of Tc and α are caused by gaps or pseudogaps similar to those
in YBCO. In order to transfer our results from YBCO to
La x2- BaxCuO4 and LSCO, we consider the calculated α in
YBCO as a function of T T ,c c,0 where Tc,0 is the optimal Tc for
a doping near the onset of the pseudogap. Treating first
La x2- BaxCuO4, we can read off from figure 2 of [33] the
doping as a function of T T ,c c,0 where Tc,0 is the value of Tc
near the dopings 1d or .2d Identifying the two ratios for the
reduction of Tc, one obtains α as a function of doping in
La x2- BaxCuO4. The same procedure can be applied to LSCO.
From figure 3 in [6] one can read off δ as a function of T T ,c c,0
where Tc,0 is the largest transition temperature near 0.15.d =
Comparing this reduction ratio with the case of YBCO, one
finds the doping dependence of α in LSCO. Figure 6 contains
the obtained curves, calculated for V = 0.1 and 0.1,0w =
together with experimental values for LSCO from [5]. Our
calculation suggests the following interpretation of the
experimental α in LSCO. One has to distinguish between two
pseudogaps in LSCO. The first one is the usual pseudogap,
which is observed by angle-resolved photoemission and
which exists below 0.20d ~ [34]. This pseudogap corre-
sponds to that occurring in underdoped cuprates and develops
at T .* At low doping, superconductivity competes with the
phase underlying the pseudogap, leading to the overall
decrease of Tc down to very low values near 0.05.d = At the
same time this decrease of Tc is associated with a monotonic
increase of α similar to that in YBCO. The second pseudogap
is located between 0.10d = and 0.15d = and is due to static
(in La x2- BaxCuO4) or fluctuating (in LSCO) stripes. As a
result Tc is strongly (in La x2- BaxCuO4) or slightly (in LSCO)
suppressed. Correspondingly, the increase of α in figure 6 is
large for the Ba- and small for the Sr- doped systems. It is
interesting to see that the calculated curve for LSCO shows
only a small peak at doping 1/8, quite in contrast to the
experimental curve. The reason for this is that the employed
experimental Tc curve exhibits only a small dip near the
doping 1/8. One prediction of our calculation is that α in Ba-
doped La2CuO4 should show a large peak near doping 1/8.
Though our calculation for α in LSCO is not able to get
quantitative agreement with experiment, we think that the
shift of the spectral weight from low to higher energies
associated with the formation of the pseudogap plays also a
role in LSCO.

Finally we would like to mention that strong renormali-
zations (softenings and broadenings) of phonons have been
observed in underdoped cuprates (see [35] and references
therein). These anomalies occur for wave vectors along the
crystalline axis with a length of about 0.3 and are seen both in
acoustical [36] and optical bond-stretching phonons [37].
They are probably related to the recently observed charge
order in these systems [36]. On the other hand, extensive
LDA calculations, performed for YBa2Cu3O7, did not yield
unusual softenings [21, 38] and cannot explain these phonon
anomalies. However, our main result is independent of the
validity of the LDA in cuprates and shows only that the
observed large values of α in underdoped cuprates are at least
compatible with the LDA values for the EP coupling con-
stants. The existence of the above phonon anomalies suggests

Figure 6. Isotope coefficient α as a function of doping. Filled circles
are experimental points in LSCO from [5]. Empty circles and
squares are calculated values for La x2- BaxCuO4 and LSCO,
respectively. Corresponding points have been joined smoothly by
lines.
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that it is not possible to conclude quite generally from these
and other successful LDA results [29, 30] that the EP cou-
pling is necessarily small in the cuprates. Thus, the correct
explanation of the phonon anomalies is presently an open
problem and beyond the scope of our paper, similarly to their
influence on Tc.

4. Conclusions

In summary, our calculations of the isotope coefficient α were
based on a mean-field, like treatment of the t–J model, where
optimal doping coincides with the onset of a CDW, which
competes with superconductivity in the underdoped regime
and suppresses Tc there. Adding phonons and the EP cou-
pling, our model can explain the strong experimental increase
of α in the underdoped region, using at the same time the
small EP coupling constants from the LDA. Thus we con-
clude that the large values for α in the underdoped regime
give no evidence for a large EP coupling in these systems but
are compatible with the small LDA values once the compet-
ing phase is taken into account. Large enhancements of α are
found if the phonon energy 0w and the gap Φ are comparable
in magnitude and are absent for very small or large ratios

.0w F Our explanation of the behavior of α is supported by
several experimental facts: α assumes its minimum at optimal
doping, where the competing phase sets in, and strongly
increases towards lower dopings in the presence of the
competing phase; in this region superconductivity forms from
a state where the density of electronic states varies strongly
over the scale of phonon energies, which is quite different
from the normal state. All these features make, in our opinion,
explanations very improbable that are based on a strong EP
interaction, polarons, or anharmonic mechanisms.
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