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Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional

quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and

Gr€obner bases to a single-input single-output representation of the system. A detailed study of a

generalized scalar quadratic map and a well-known delayed logistic model is included for illustra-

tion. In the former example, conditions for the existence of bistability phenomenon are also

introduced. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935955]

Period-four orbits exhibited by a family of n-dimensional

quadratic maps are analyzed via a frequency-domain

(FD) viewpoint. The methodology relies on the input-

output representation of the system, the Fourier series

decomposition of the orbit, and the application of the har-

monic balance. Contrary to the state-space representa-

tion, the proposed input-output description reduces to

the interaction of two scalar functions, facilitating the

developments. Analytical and exact expressions of the

periodic points are found by applying Gr€obner bases to a

set of quadratic polynomial equations. The appearance of

these oscillations in a generalized scalar quadratic map

and a well-known delayed logistic model is studied in

detail. In the last example, results related to the appear-

ance of the bistability phenomenon are also obtained. In

particular, it is shown that a period-four attractor can

coexist with a stable fixed point/period-two orbit only if

delayed samples are congruent with one (modulus four).

In addition, it is illustrated how two stable period-four

orbits can exist simultaneously for even delays congruent

with two (modulus four).

I. INTRODUCTION

There exists a great variety of discrete maps coming

from different branches of science that manifest the appear-

ance of periodic orbits. The origin of these maps lies in the

representation of temporal evolutions that are inherently dis-

crete as well as the analysis of oscillations in continuous dy-

namical systems via the Poincar�e section. Among the

extensive list of examples, it can be mentioned the popula-

tion models in Biology,1–3 the cardiac activity models in

Medicine,4–6 the structure markets in Economics,7,8 the

impact systems in Mechanics,9,10 the modulated lasers in

Physics,11–13 the power converters in Electronics,14,15 etc. In

many of these applications, quadratic maps have played an

important role in the description of the detected dynamical

scenarios.

Discrete maps can undergo periodic orbits due to exis-

tence of period-doubling bifurcations, Neimark-Sacker bifur-

cations, and even more complicated nonlinear phenomena

such as period-doubling cascades,16,17 weak and strong

resonances,18 bubbles,19 bistability,11–13 and periodic win-

dows after the onset of chaos.20,21 Most of these scenarios

are related to the existence of saddle-node bifurcations.

Thus, for instance, period-p windows inside chaos arise from

a saddle-node of period-p orbits (SNp) and continue with a

sequence of period doublings within the corresponding inter-

val. Another example is given by bubbles, which consist in a

combination of a SNp with its reverse version.

Periodic oscillations have been studied analytically and

numerically by means of different methods and algorithms.

Explicit analytical results always complement the exhaustive

numerical simulations found in the literature. But, further-

more, they help to understand the effect of the different pa-

rameters of the system on the location and characteristics of

the orbits. Commonly, period-p points are considered as

fixed points of the pth-iterated map.2 Thus, period-two (P2)

orbits are analyzed via the second-iterated map, period-four

(P4) orbits are studied via the fourth-iterated maps, and so

on. Since, for example, the fourth recurrence of a scalar

quadratic map results in a sixteenth order polynomial, ana-

lytical developments based on this approach become almost

impracticable rapidly.

To overcome this situation, alternative procedures have

been proposed. In Ref. 22, the unknown points are found by

inserting the Fourier decomposition of the periodic orbit into

the recurrence expressions. Solutions are obtained by reduc-

ing difference equations to equivalent polynomials parame-

terized in terms of an arbitrary variable in Refs. 23 and 24.

Approximate representations of the period-2k (k � 1) orbits

are developed in Ref. 25 by means of a scaling method. In

all cases, results deal with particular one- and two-

dimensional quadratic maps.
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A FD methodology for the study of orbits emerging

from period-doubling and Neimark-Sacker bifurcations in n-

dimensional maps is presented in Refs. 26–28. Procedures

are based on concepts from control theory such as the input-

output representation of the system, the Fourier decomposi-

tion of the orbit, and the closed-loop balance of the involved

harmonics. Explicit expressions of the oscillations are

obtained by considering a finite Taylor expansion of the

involved nonlinearity and a truncated Fourier decomposition

of the orbits. Higher-order terms of the balance equations are

also neglected by making certain assumptions on the magni-

tude of the coefficients. These contributions complement

Refs. 29–36, demonstrating that the FD approach can be an

appropriate option for the analysis of oscillations in

continuous-time, discrete-time, and delayed systems.

The aim of this paper is to show the potential of the FD

viewpoint to find the analytical and exact solutions of the P4

orbits exhibited by a family of n-dimensional maps. Critical

conditions corresponding to the onset of the solutions and

the general expressions of each periodic point are provided.

Developments follow the fundamental ideas of the classical

FD method but, in contrast to the previous contributions, the

harmonic balance is applied here to the whole finite number

of terms constituting the orbit. Moreover, since quadratic

nonlinearities are considered, exact Taylor expansions can

be used. Solutions are obtained thanks to the application of

Gr€obner bases for polynomial maps37 to the complete set of

balance equations. Some results concerning the dynamical

characterization of a scalar quadratic map by using these

bases can be found in Refs. 38 and 39.

This paper is organized as follows. In Sec. II, prelimi-

nary concepts about the FD treatment of n-dimensional

quadratic maps are introduced. Developments concerning

the application of the harmonic balance complemented by

Gr€obner bases to obtain the analytical expressions of P4

orbits are described in Sec. III. The potentiality of the results

is illustrated in Sec. IV by studying a generalized scalar

quadratic map and a delayed version of the logistic map.

Finally, conclusions are given in Sec. V.

II. THE FREQUENCY-DOMAIN VIEWPOINT

Procedures commonly used for the dynamical analysis

of maps imply the manipulation of the whole state-variable

difference equations of the system. The FD viewpoint con-

sidered here is applied to an equivalent input-output repre-

sentation. As the number of inputs and outputs is normally

smaller than the number of internal states, the dimension of

the system can be naturally reduced, simplifying the

calculations.

The classical Lur’e single-input single-output represen-

tation is depicted in Fig. 1, which is composed of a linear dy-

namical block connected to a nonlinear static one by means

of a feedback loop. The variables in this configuration are

the input vk 2 R, the error ek 2 R, and the output yk 2 R.

Since it is linear, block Gð�Þ is expressed in the domain of

the z-transformation. The nonlinear block is simply

expressed as a smooth function f ð�Þ : R! R. As vk is

assumed to be zero, the input of Gð�Þ is directly ek ¼ �f ðykÞ.
This feedback model is sufficiently wide as to represent

a great number of nonlinear maps. In particular, let us con-

sider the following n-dimensional system:

xkþ1 ¼ Axk þ Bðayk
2 þ byk þ cÞ;

yk ¼ Cxk;
(1)

with xk 2 Rn; A 2 Rn�n; B 2 Rn�1; C 2 R1�n, and a 6¼ 0.

This map can be seen as a generalization of a family of quad-

ratic maps widely studied in the literature.2,18,20 Some repre-

sentative examples are resumed in Table I.

There exist many distinct but equivalent forms of repre-

senting (1) as the block diagram of Fig. 1. In fact, introduc-

ing an arbitrary linear term Dyk, (1) can be rewritten as

xkþ1 ¼ Axk þ BDCxk þ Bek;

yk ¼ Cxk;

ek ¼ ayk
2 þ byk þ c� Dyk:

(2)

Then, applying the z-transform and making some algebraic

operations (see Appendix A for further details), the linear dy-

namical block Gð�Þ and the function f ð�Þ containing the non-

linearities of the system are

GðzÞ ¼ C½zI � ðAþ BDCÞ��1B; (3)

f ðykÞ ¼ �ðay2
k þ byk þ cÞ: (4)

For simplicity, the linear part of f ð�Þ, given by ðb� DÞyk,

has been unified as byk. Coefficient D is useful to obtain dif-

ferent realizations but it does not modify the fundamental

results. An appropriate election of D corresponds to define a

G(z) without zeros and poles at the frequencies involved in

the periodic orbit under study (z ¼ ei0 ¼ 1; z ¼ eip ¼ �1

and z ¼ eip=2). Notice also that, according to the dimension

of matrices A, B, and C, block G(z) transforms into a scalar

rational function in the complex variable z. Thus, the analy-

sis of the original n-dimensional system is reduced to that of

an interconnection between two scalar functions. Input-

output representations of quadratic maps given in Table I

evidence this simplification.

Fixed points ŷ of system (3)–(4) can be calculated via

the scalar equation ŷ ¼ �Gð1Þf ðŷÞ ¼ Gð1Þðaŷ2 þ bŷ þ cÞ,
where G(1) is the response of the linear block to a signal of

frequency x¼ 0 (z ¼ ei0 ¼ 1). Then, it is easy to see that

ŷ6 ¼
1� bG 1ð Þ

2aG 1ð Þ
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bG 1ð Þ½ �2 � 4acG 1ð Þ2

q
2aG 1ð Þ

;

which will exist if D2 ¼ ½1� bGð1Þ�2 � 4acGð1Þ2 � 0. The

stability of each ŷ6 can be determined by means of the

FIG. 1. Input-output representation of discrete-time nonlinear systems.
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open-loop function GðzÞJ, where J is the derivative of f ð�Þ at

ŷ6. In particular, the fixed point will be non hyperbolic if

GðeixÞJ ¼ �1þ i0 for certain x ¼ xo. Thus, for instance,

period-doubling bifurcations occur if xo ¼ p, while Neimark-

Sacker bifurcations occur if xo ¼ xH , with the exception of

xH values such that einxH ¼ 1 for n¼ 1, 2, 3, or 4 since they

correspond to the case of strong resonances 1:1, 1:2, 1:3, and

1:4, respectively. Details about stability analysis of the result-

ing bifurcations can be found in Refs. 26–28.

The input-output representation facilitates the applica-

tion of the harmonic balance method for the characterization

of the orbits. To do that, the oscillation needs to be repre-

sented by means of an appropriate Fourier series decomposi-

tion. In the case of continuous-time nonlinear systems, the

Fourier series is truncated up to a determined number of

terms since the orbit decomposition usually contains infinite

harmonics. This is also accompanied by considering a finite

Taylor expansion of the nonlinear function in order to obtain

a finite number of equations to be solved. So, the harmonic

balance certainly provides an approximation of the actual

solution.29–33

Discrete-time nonlinear systems can undergo periodic or

quasiperiodic orbits. In the last case, an infinite number of

terms is required to represent the oscillation accurately. So,

analogously to the continuous-time counterpart, the harmonic

balance method necessarily implies neglecting higher har-

monic terms, leading to approximate orbit representations.26,28

However, if the orbit is periodic with period p ¼ 2p=x
(p 2 Zþ or even Qþ) such as yk ¼ ykþp, the complex expo-

nentials eirxk (r 2 N) conforming the Fourier series repeat if a

harmonic number greater than p is considered. In fact, if

r ¼ pþ 1, then eiðpþ1Þxk ¼ eið2pþxÞk ¼ eixk corresponding to

r¼ 1 and, in general, if r � p, then eirxk ¼ ei~rxk, where ~r
stands for the value of r modulus p. Therefore, only a finite

number of harmonics are needed to represent exactly a pe-

riod-p oscillation. Now, if the Taylor expansion of the nonlin-

ear function is truncated, results will be approximate as well,

as in Ref. 27. Since quadratic functions are considered here,

higher-order terms are naturally zero making possible to pro-

vide analytic and exact solutions of the periodic orbits.

III. ANALYTICAL PERIODIC SOLUTIONS OF
QUADRATIC MAPS

In this section, the exact solutions of the P2 and P4 orbits

exhibited by quadratic map (1) are obtained. As could be

expected, coefficients involved in the Fourier decomposition

of the P2 orbits are calculated almost effortlessly.40 The same

does not occur in the case of the P4 oscillations. The harmonic

balance results in a set of four quadratic polynomials depend-

ing on four unknown variables. The complexity is overcame

by using an algebraic tool known as Gr€obner bases.37

A. Period-two solutions

The Fourier decomposition of a P2 orbit can be

expressed as

yk ¼ ŷ þ Y0 þ Y1eipk; (5)

where ŷ ¼ ŷþ or ŷ�; Y0 2 R is a correction of the fixed point

ŷ to achieve the center or average value ~Y0 ¼ ŷ þ Y0 of the

oscillation and Y1 2 R represents the amplitude of the main

TABLE I. Examples of input-output descriptions of some quadratic maps.

I-O representation

Scalar quadratic map

xkþ1 ¼ x2
k þ c A¼ 0, B ¼ C ¼ 1, a¼ 1, b¼ 0

GðzÞ ¼ 1
z ; f ðykÞ ¼ �ðy2

k þ cÞ.

Logistic map

xkþ1 ¼ axkð1� xkÞ A¼ 0, B ¼ C ¼ 1; a ¼ �b ¼ �a, c¼ 0

GðzÞ ¼ 1
z ; f ðykÞ ¼ �aykð1� ykÞ.

H�enon map

x1;kþ1 ¼ px2;k þ q� x2
1;k;

x2;kþ1 ¼ x1;k

A ¼
�

0 p
1 0

�
, BT ¼ C ¼ ð 1 0 Þ,

a¼� 1, b¼ 0, c ¼ q

GðzÞ ¼ z
z2�2z�p ; f ðykÞ ¼ y2

k þ 2yk � q.

3D H�enon map

x1;kþ1 ¼ x2;k þ q� x2
1;k;

x2;kþ1 ¼ px1;k þ x3;k

x3;kþ1 ¼ �px1;k

A ¼
0 1 0

p 0 1

�p 0 0

0
@

1
A, BT ¼ C ¼ ð 1 0 0 Þ,

a¼� 1, b¼ 0, c ¼ q
GðzÞ ¼ z2

z3�2z2�pzþp ; f ðykÞ ¼ y2
k þ 2yk � q

Delayed logistic map

xkþ1 ¼ axkð1� xkÞ � gðxk�r � xkÞ A ¼

0 � � � 0 �g
1 � � � 0 0

..

. . .
.

0 0

0 � � � 1 0

0
BB@

1
CCA, BT ¼ C ¼ ð 1 0 � � � 0 Þ,

a ¼ �a; b ¼ aþ g, c¼ 0

GðzÞ ¼ zr

zrþ1þg ; f ðykÞ ¼ ay2
k � ðaþ gÞyk
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harmonic term (e�ipk is omitted since it is equivalent to eipk).

Thus, the two points conforming the discrete oscillation are

given by

yP2;1 ¼ ŷ þ Y0 � Y1;

yP2;2 ¼ ŷ þ Y0 þ Y1:

As yk is the input of the nonlinear block, the respective

output f ðykÞ can be calculated. For simplicity, f ð�Þ is written

by means of its exact Taylor series expansion around the

fixed point ŷ, i.e.,

f ðykÞ ¼ f ðŷÞ þ Jðyk � ŷÞ þ Kðyk � ŷÞ2; (6)

with J ¼ Df ðŷÞ ¼ �ð2aŷ þ bÞ and K ¼ 1=2D2f ðŷÞ ¼ �a.

Then, replacing yk by (5) and making some routine algebraic

manipulations, it is obtained

f ðykÞ ¼ f ðŷÞ þ F0 þ F1eipk

with

F0 ¼ JY0 þ KðY2
0 þ Y2

1Þ; (7)

F1 ¼ JY1 þ 2KY0Y1: (8)

Since ek ¼ �f ðykÞ is the input of the linear block Gð�Þ and it

preserves the harmonic decomposition of the original yk, the

feedback loop of Fig. 1 is closed by establishing the har-

monic balance

Y0 ¼ �Gð1ÞF0; (9)

Y1 ¼ �Gð�1ÞF1; (10)

where Gð�1Þ is the response of Gð�Þ to the harmonic fre-

quency x ¼ p (z ¼ eip ¼ �1). The derivation of these equa-

tions is included in Appendix B.

Now, combining (7)–(10), a set of two quadratic polyno-

mials in the real variables Y0 and Y1 is obtained. Thus,

0 ¼ ½1þ Gð1ÞJ�Y0 þ Gð1ÞKðY2
0 þ Y2

1Þ;

0 ¼ ½1þ Gð�1ÞJ�Y1 þ 2Gð�1ÞKY0Y1:

Omitting the existence of 1:1 and 1:2 resonances and assum-

ing the period-doubling critical condition has been already

verified, it can be affirmed that Gð1ÞJ 6¼ �1þ i0 and

Gð�1ÞJ 6¼ �1þ i0 for all parameter combination corre-

sponding to the occurrence of a P2 orbit. Then, replacing

Jacobian J by its expression as a function of a, b, and c,

Fourier coefficients representing the P2 orbit of a quadratic

map are obtained. The two possible Y1 solutions have the

same absolute value but opposite signs. As both correspond

to Fourier decompositions of the same orbit but starting from

different initial points (yP2;1 or yP2;2), the positive Y1 solution

is only reported here. Simplifying the notation as G1 ¼ Gð1Þ
and G�1 ¼ Gð�1Þ

~Y0 ¼ ŷ þ Y0 ¼
1� bG�1

2aG�1

; (11)

Y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G�1 1� bG�1ð Þ þ G1 b2 � 4acð ÞG2

�1 � 1
� �q

2a
ffiffiffiffiffiffi
G1

p
G�1

: (12)

Notice that Y1 will be a real value whenever

D2
2 ¼ 2G�1½1� bG�1� þ G1½ðb2 � 4acÞG2

�1 � 1� � 0, which

coincides with the critical condition for the appearance of

period-doubling bifurcations [Gð�1ÞJ ¼ �1þ i0] but

expressed as a function of the parameters of the system.

B. Period-four solutions

To maintain the structure of the previous decomposition,

the Fourier series representing a P4 orbit is ordered as

yk ¼ ŷ þ Y0 þ Y1eipk þ Y2eip
2
k þ �Y2e�ip

2
k; (13)

where “��” stands for the conjugate operator, Y0 2 R can be

seen again as a correction to achieve the average value of the

oscillation and Y1 2 R and Y2 ¼ Y2R þ iY2I 2 C are the coef-

ficients of the rest of harmonics (e�ip
2
k is equivalent to ei3p

2
k).

Thus, periodic points can be recast as

yP4;1 ¼ ŷ þ Y0 � Y1 � 2Y2I;

yP4;2 ¼ ŷ þ Y0 þ Y1 � 2Y2R;

yP4;3 ¼ ŷ þ Y0 � Y1 þ 2Y2I;

yP4;4 ¼ ŷ þ Y0 þ Y1 þ 2Y2R:

Besides solution (13) could be thought as an expansion of

(5), coefficients Y0 and Y1 are not necessarily the same. They

will coincide at the onset of P4 orbits (Y2 ¼ 0), which are

preceded by P2 solutions.

Considering that (13) is the input of the nonlinear block,

the output of the Taylor expansion (6) results in

f ykð Þ ¼ f ŷð Þ þ J Y0 þ Y1eipk þ Y2eip
2
k þ �Y 2e�ip

2
k

� �
þ K½Y2

0 þ Y2
1 þ 2jY2j2þð2Y0Y1 þ Y2

2 þ �Y
2
2Þeipk

þ 2 Y0Y2 þ Y1
�Y 2ð Þeip

2
k þ 2 Y0

�Y2 þ Y1Y2ð Þe�ip
2
k�;

which is equivalent to

f ykð Þ ¼ f ŷð Þ þ F0 þ F1eipk þ F2eip
2
k þ �F2e�ip

2
k;

with

F0 ¼ JY0 þ KðY2
0 þ Y2

1 þ 2jY2j2Þ; (14)

F1 ¼ JY1 þ Kð2Y0Y1 þ Y2
2 þ �Y

2
2Þ; (15)

F2 ¼ JY2 þ 2KðY0Y2 þ Y1
�Y2Þ: (16)

Then, the harmonic balance originated by closing the loop in

Fig. 1 (see Appendix B for a detailed justification) is given by

Y0 ¼ �Gð1ÞF0; (17)

Y1 ¼ �Gð�1ÞF1; (18)

Y2 ¼ �GðiÞF2; (19)

where GðiÞ 2 C is the response of Gð�Þ to a signal of fre-

quency x ¼ p=2 (z ¼ eip=2 ¼ i).
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The combination of (14)–(19) leads to three polynomials

in variables Y0, Y1, and Y2 with complex coefficients. To

facilitate the calculations, balance equations are transformed

into four real polynomials in Y0, Y1, Y2R, and Y2I. Using the

notation G1 ¼ Gð1Þ; G�1 ¼ Gð�1Þ, and Gi ¼ GðiÞ ¼
GiR þ iGiI with GiI 6¼ 0 (since the critical condition of reso-

nance 1:4 is omitted), they are expressed as

0 ¼ ð1þ G1JÞY0 þ G1KðY2
0 þ Y2

1 þ 2Y2
2R þ 2Y2

2IÞ;

0 ¼ ð1þ G�1JÞY1 þ 2G�1KðY0Y1 þ Y2
2R � Y2

2IÞ;

0 ¼ f1þ GiR½J þ 2KðY0 þ Y1Þ�gY2R

� GiI½J þ 2KðY0 � Y1Þ�Y2I;

0 ¼ GiI½J þ 2KðY0 þ Y1Þ�Y2R

þ f1þ GiR½J þ 2KðY0 � Y1Þ�gY2I:

From the last two equations, it can be deduced that the

Y2 solution will be different from zero whenever

1þ GiRCþ �GiIC�
GiICþ 1þ GiRC�

				
				 ¼ 0; (20)

where C6 ¼ ½J þ 2KðY06Y1Þ�. Notice that if Y0 and Y1 are

replaced by the values corresponding to preceding dynamics

such as fixed points or P2 orbits (as it occurs in a period-

doubling cascade), this determinant reduces to the critical

condition for the onset of two possible scenarios involving

P4 orbits in a n-dimensional map.

• P4 orbits emerging from a fixed point. As coefficients Y0

and Y1 are equal to zero, the determinant transforms into

the critical condition

0 ¼ G2
1 � 2G1GiR þ 2ðG1GiR � jGij2ÞDþ jGij2D2: (21)

• P4 orbits emerging from a P2 oscillation. Substituting Y0

and Y1 by (11) and (12), respectively, condition (20)

results equivalent to

0 ¼ jGij2ðG1 � D2
2Þ � 2G1G�1GiR þ G1G2

�1: (22)

Assuming that (20) is verified, coefficients of the Fourier se-

ries representing P4 orbits can be obtained. To simplify the

algebraic manipulation of the balance equations, J and K are

replaced by its expressions as a function of the parameters

and Y0 is written as ~Y0 � ŷ. Thus, a set of polynomials P ¼
fp1; p2; p3; p4g with

p1 ¼ ð1� bG1Þ ~Y0 � aG1
~Y

2

0 � aG1Y2
1 � 2aG1Y2

2R

� 2aG1Y2
2I � cG1;

p2 ¼ ð1� bG�1ÞY1 � 2aG�1
~Y0Y1 � 2aG�1Y2

2R þ 2aG�1Y2
2I;

p3 ¼ ð1� bGiRÞY2R � 2aGiR
~Y0Y2R � 2aGiRY1Y2R þ bGiIY2I

þ 2aGiI
~Y0Y2I � 2aGiIY1Y2I;

p4 ¼ ð1� bGiRÞY2I � 2aGiR
~Y0Y2I þ 2aGiRY1Y2I � bGiIY2R

� 2aGiI
~Y0Y2R � 2aGiIY1Y2R;

is defined. Due to the involved complexity, the real roots of

P are found by using Gr€obner bases. This is an algebraic

mechanism, equivalent to the Gauss triangulation for linear

equations, that permits to obtain a new polynomial set con-

taining the same roots of P. Since the algorithm contem-

plates the variable elimination following a determined

monomial order, the equivalent polynomial system results

simpler to be solved.37

So, let us suppose that P generates the ideal41 I belong-

ing to the polynomial ring in variables Y2R; Y2I, Y1, ~Y0 with

coefficients in the field of the rational functions of the pa-

rameters. Setting the lexicographical order Y2R � Y2I � Y1

� ~Y 0, the rth elimination ideal Ir contains all the consequen-

ces of equations p1 ¼ p2 ¼ p3 ¼ p4 ¼ 0, which eliminate the

first r variables, with r¼ 1, 2, and 3. The sequence of ideals

I � I1 � I2 � I3 leads to the elimination of Y2R; Y2I, and Y1.

The last ideal consists of polynomials in the last variable ~Y 0

alone. Algorithms for computing Gr€obner bases are imple-

mented in many commercial or academic computer pro-

grams such as Maple, Mathematica, and Magma.37,39 When

the lexicographical order is considered, the calculation of

these bases provides automatically a basis of all ideals Ir. In

this case, the obtained Gr€obner basis is composed of six pol-

ynomials. One of them, denoted here as g, corresponds to the

basis of I3 and then it only depends on the unknown ~Y0. This

particular polynomial makes easier to find the desired solu-

tions of the system.

Making algebraic manipulations, g can be factorized

into a product of distinct irreducible polynomials as

g ¼ g1g2g3, where

g1 ¼ ð1� bG1Þ ~Y0 � aG1
~Y

2

0 � cG1;

g2 ¼ 1� bG�1 � 2aG�1
~Y 0;

g3¼G1G�1ðGiRþ2bG2
iIÞþG1jGij2½2�5bG�1�bjGij2

�ð3b2G�1�2bþ4acG�1Þ
þGiRð7b2G�1�4bþ4acG�1Þ�
�f4ajGij2ðGiR�bjGij2ÞG�1þ2aG1½ð5G2

iRþ3G2
iIÞG�1

þ4GiRjGij2ð1�4bG�1ÞþjGij4ð11b2G�1�4b

þ4acG�1Þ�g ~Y0þ8a2jGij2½4G1GiRG�1

þjGij2ðG1þG�1�6bG1G�1Þ� ~Y
2

0�32a3G1jGij4G�1
~Y

3

0:

The roots of each gi (i¼ 1, 2, 3) are related to three different

solutions of the map:

• Fixed points: The quadratic roots of factor g1 conform the

fixed points of the map as they are solutions of P ¼ 0 for

Y1 ¼ Y2R ¼ Y2I ¼ 0.
• Period-two points: The unique root of factor g2 is part of

the period-two solution as it verifies P ¼ 0 together with

0 ¼ ð1� bG�1ÞY1 � 2aG�1
~Y 0Y1 and Y2R ¼ Y2I ¼ 0.

These expressions are equivalent to coefficients (11) and

(12) given in Section III A.
• Period-four points: The roots of factor g3 correspond to

P4 orbits since they are solutions of P ¼ 0 for Y2R 6¼ 0 and

Y2I 6¼ 0.
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Since g3 is a cubic polynomial, it will always have a real

root. According to the parameter values, this solution could

be the only one (since the other two are conjugate complex

roots) or be part of a set of three real roots. The former case

is associated with the appearance of a unique P4 orbit.

Critical condition (22) indicates the onset of this oscillation

when it arises from a previous P2 orbit. The latter one is con-

nected to the occurrence of three P4 orbits, with their respec-

tive stability, simultaneously. This can describe, for

example, the classical scenario of P4 windows after the onset

of chaos or, as it will be shown in Sec. IV B, the bistability

phenomenon developed by delayed maps. The final number

of P4 solutions is actually determined by the existence of

real roots for the rest of the coefficients (Y1, Y2R, and Y2I).

To only find the expressions of the Fourier coefficients

representing any of the three possible P4 solutions, factor g3

is added to the original set of harmonic balance polynomials

generating a new ~P ¼ P [ g3. Applying now Gr€obner bases

to ~P, the desired four polynomials with triangular structure

are obtained. One of them is precisely g3, which gives the

three possible ~Y0 solutions. The rest lead to the calculation

of Y1, Y2R, and Y2I recursively. The complete set is given by

0 ¼ G1G�1ðGiR þ 2bG2
iIÞ þ G1jGij2½2� 5bG�1 � bjGij2ð3b2G�1 � 2bþ 4acG�1ÞþGiRð7b2G�1 � 4bþ 4acG�1Þ�

� f2aG1½ð5G2
iR þ 3G2

iIÞG�1 þ 4GiRjGij2ð1� 4bG�1ÞþjGij4ð11b2G�1 � 4bþ 4acG�1Þ�

þ 4ajGij2ðGiR � bjGij2ÞG�1g ~Y 0þ8a2jGij2½4G1GiRG�1 þ jGij2ðG1 þ G�1 � 6bG1G�1Þ� ~Y
2

0 � 32a3G1jGij4G�1
~Y

3

0;

0 ¼ 1� 2bGiR þ b2jGij2 � 4aðGiR � bjGij2Þ ~Y0 þ 4a2jGij2 ~Y
2

0 � 4a2jGij2Y2
1 ;

0 ¼ G1½1� 2bGiR þ ðb2 þ 4acÞjGij2�G�1 � 4½aG1GiR þ ða� 2abG1ÞjGij2�G�1
~Y0þ8a2G1jGij2G�1

~Y
2

0

þ 4aG1jGij2ð1� bG�1ÞY1 � 8a2G1jGij2G�1
~Y 0Y1 þ 16a2G1jGij2G�1Y2

2I;

0 ¼ ðGiR � bjGij2ÞY2I � 2ajGij2 ~Y0 þ 2ajGij2Y1Y2I � GiIY2R;

where the main coefficient of each polynomial is nonzero

since the critical condition of resonance 1:4 is omitted

(GiI 6¼ 0) and the feedback representation of the map is

defined assuring that G1 6¼ 0; G�1 6¼ 0 and jGij2 6¼ 0. As can

be observed, there exist two possible Y1 values for each ~Y0

solution; and also, two Y2 ¼ Y2R þ iY2I for each pair ~Y0�Y1.

These four solutions actually correspond to four equivalent

Fourier decompositions of the same orbit. The difference

between them lies in the initial point (yP4;i with i ¼ 1;…; 4)

selected to reproduce the periodic sequence.

It is worth mentioning that a similar procedure can be

followed by considering factors g1 and g2. Obtained solu-

tions will coincide with the expressions of the fixed points

and the P2 orbits given in Sections II and III A.

IV. EXAMPLES

In this section, analytical results are used to describe the

different P4 solutions exhibited by a generalized scalar map

and a delayed logistic map. In the second case, the dimen-

sion of the complete state-variable model depends on the

delay in time adopted by the control law. The equivalent

input-output representation makes it possible to reduce the

dimension of the states, facilitating the calculations.42

A. Scalar maps

As inferred from Table I, the input-output representation

of the whole family of scalar quadratic maps can be general-

ized as GðzÞ ¼ 1=z and f ðykÞ ¼ �ðay2
k þ byk þ cÞ with

TABLE II. Solutions of the scalar quadratic maps.

Fixed points

D2 � 0 ŷ6 ¼
1� b

2a
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� bÞ2 � 4ac

q
2a

P2 orbit

D2 � 4 � 0 ~Y 0 ¼ �
1þ b

2a
,

Y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� bÞ2 � 4ac� 4

q
2a

P4 orbit

D2 � 6 � 0 0 ¼ ð2þ 3bÞð1þ b2Þ þ 4abcþ 2að3þ 2bþ 11b2 þ 4acÞ ~Y 0 þ 48a2b ~Y
2

0 þ 32a3 ~Y
3

0,

Y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbþ 2a ~Y 0Þ2

q
2a

,

Y2I ¼
ffiffiffiffiffiffi
y2I
p

4a
,

y2I ¼ �ð1þ b2 þ 4acÞ þ 4að1� 2bÞ ~Y 0 � 8a2 ~Y
2

0 þ 4að1þ bþ 2a ~Y 0ÞY1

Y2R ¼ bY2I þ 2a ~Y 0Y2I � 2aY1Y2I
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yk 2 R. Since G1 ¼ 1; G�1 ¼ �1; Gi ¼ �i, and also

D2 ¼ ð1� bÞ2 � 4ac, analytical expressions simplify

greatly, leading to the results resumed in Table II. Fixed

points are defined whenever D2 � 0 while P2 orbits occur

for D2 � 4 � 0. In the case of P4 points, critical conditions

(21) and (22) were analyzed. As expected, there do not exist

real a, b, and c combinations that verify condition (21) corre-

sponding to the appearance of P4 orbits directly from the

fixed point. According to (22), P4 orbits emerge from the

preceding P2 solutions at D2 � 6 ¼ 0.

The study of the number of real roots of the cubic poly-

nomial in ~Y0 (see Table II) permits to complete the dynami-

cal scenario. Analyzing the coefficients of the polynomial

and calculating the respective discriminant,43 it can be deter-

mined that (i) for 6 	 D2 < 4þ 3 � 22=3, there is one real

root, which is equivalent to the unique P4 orbit; (ii) for

D2 ¼ 4þ 3 � 22=3, there are three real roots of which two are

equal, indicating that a SN4 adds to the previous solution;

(iii) for D2 > 4þ 3 � 22=3, there are three real and unequal

roots, validating that three different P4 orbits coexist in the

system. Indeed, condition (ii) corresponds to the creation of

a P4 window in the middle of chaos.

The logistic1,2,16,20 map xkþ1 ¼ axkð1� xkÞ with growth

rate a � 1 is chosen to illustrate these results numerically. In

this case, a ¼ �b ¼ �a and c¼ 0 so that there exists a

unique nontrivial fixed point ŷ� ¼ 1� 1=a, which is stable

for 1 	 a 	 3 (ŷþ ¼ 0 is always unstable). Based on Table

II, P2 and P4 orbits belonging to the period-doubling cascade

emerge for a � 3 and a � aP4 ¼ 1þ
ffiffiffi
6
p

, respectively. Once

the map becomes chaotic, the P4 window occurs at

a ¼ aSN4 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3 � 22=3

p
. Figure 2 shows the complete

route to chaos (red) of the logistic map as parameter a is

increased. The exact (stable and unstable) P4 solutions pro-

vided by expressions in Table II have been overhead (blue).

Period-four branches within the cascade are plotted in detail

in Fig. 3. The blow-up of the P4 window inside chaos can be

seen in Fig. 4. In both figures, there exists a complete coinci-

dence between analytical and numerical results.

B. Delayed logistic map

In the chaos control technique proposed by Pyragas,44

unstable periodic orbits are stabilized by using time-delayed

versions of the states in the feedback loop.45 Besides its sim-

plicity, this controller can provoke that new unexpected

attractors coexist with the desired dynamics giving rise to

the so-called bistability phenomenon.11–13 Developments of

Sec. III help to understand how the Pyragas method affects

the characteristics of the orbits with period up to four exhib-

ited by the logistic map. Analytical results concerning small

delay values can be found in the literature.13,46 For larger

delays, nonlinear dynamics are studied by means of numeri-

cal calculations.

The delayed version of the logistic map can be

expressed as xkþ1 ¼ axkð1� xkÞ � gðxk�r � xkÞ, where a is

the growth rate of the original system (a � 1), g is the con-

trol gain (�1 < g < 1), and r is the delay in time (r � 1).

The feedback loop implies an increase in the dimension of

the state-variable system. This extension is overcame here

by studying the map via the FD viewpoint. In fact, the

FIG. 2. Period-doubling cascade developed by the logistic map as the grow

rate is increased. Red: numerical simulations; blue: exact solutions obtained

by the FD methodology.

FIG. 3. Blow-up of the P4 branches within the period-doubling cascade.

Red: numerical simulations; blue: exact solutions obtained by the FD

methodology.

FIG. 4. Blow-up of the P4 window inside chaos. Red: numerical simula-

tions; blue: exact solutions obtained by the FD methodology.
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equivalent input-output representation is given by GðzÞ ¼
zr=ðzrþ1 þ gÞ and f ðykÞ ¼ ay2

k � ðaþ gÞyk independently of

the arbitrary delay value (Table I).

As it is known, the Pyragas control maintains the fixed

points of the original map (g¼ 0), i.e., ŷ� ¼ 1� 1=a and

ŷþ ¼ 0. However, the posterior dynamical behavior and the

appearance of new attractors will depend on the gain and

delay of the feedback loop.

• Period-two solutions: Block Gð�Þ evaluated at x ¼ p gives

G�1 ¼ ð�1Þr=½ð�1Þrþ1 þ g�, suggesting that the r parity

influences in the way the control changes the P2 orbits.

Considering that G1 ¼ 1=ð1þ gÞ and

G�1 ¼
� 1

1þ g
if r is odd;

� 1

1� g
if r is even;

8>><
>>:

the two possible solutions derived from the expressions of

Section III A are resumed in Table III. As can be inferred,

P2 orbits are equal to those developed by the scalar map

(g¼ 0) for even r values. However, they differ from the

original ones for odd r values. In particular, the onset of

P2 solutions is shifted to higher (lower) a values for gain

g > 0 (g < 0), increasing (decreasing) the interval where

ŷ� is stable.
• Period-four solutions: In this case, it results

Gi ¼ eirp
2=ðeiðrþ1Þp

2 þ gÞ. Since x ¼ p=2 conforms the

complex fourth roots of unity and also eirp
2 ¼ eið~rþ4sÞp

2 ¼
ei~rp

2 with ~r ¼ 0; 1; 2; 3 and s 2 Z, Gi presents four types of

dynamical responses. For even r values, GiI ¼ �1=ð1þ
g2Þ while

GiR ¼

g
1þ g2

if r 
 0 mod4ð Þ;

� g
1þ g2

if r 
 2 mod4ð Þ:

8>><
>>:

For odd r values, GiR¼ 0 while

GiI ¼
� 1

1� g
if r 
 1 mod4ð Þ;

� 1

1þ g
if r 
 3 mod4ð Þ:

8>><
>>:

From (21), it is found that the delayed logistic map does

not develop P4 points emerging from a fixed point.

Condition (22) permits to affirm that there exist P4 orbits

induced by P2 oscillations but their occurrence depends

on the congruence class of delay r, as listed in Table IV.

These P4 solutions are related to the independent real root

of the cubic polynomial in ~Y0 . Conditions for which the

other two roots become real (leading to a SN4) are deter-

mined by the discriminant of the polynomial. The respec-

tive expressions for different delay classes are included in

Appendix C. The discriminant of r 
 0 is omitted since,

in this case, the control preserves the original SN4

(a ¼ aSN4). For the rest of r values, the SN4 could main-

tain after the cascade or approximate it coexisting with

other periodic orbits.

Critical curves in the parameter plane ða; gÞ describing the

regions where there exist solutions of period up to 4 for dif-

ferent r classes are depicted in Fig. 5. As expected, the first

two branches of the period-doubling cascade as well as the

P4 window inside chaos keep unchanged for any g value and

r 
 0 [Fig. 5(a)]. Since this congruence class is composed of

delay values equal to or greater than 4, the period of the

orbits in condition to be modified exceeds that of the solu-

tions studied here.

Even delays belonging to class r 
 2ðmod4Þ permit to

control the onset of P4 orbits [Fig. 5(b)]. For g < 0 (g > 0),

the P4 branches arising in the period-doubling cascade shift

to a � aP4 (a 	 aP4), increasing (decreasing) the interval

where P2 orbits are stable. The SN4 curve moves to a values

greater than aSN4 for g < 0 or g > 0:549. However, it locates

at a values lower than aSN4 for 0 < g 	 0:549. Inside this

gain control interval, it could also occur that the map

presents more than one SN4. The proximity of the curves

plus the possibility of multiple SN4 solutions leads to the ex-

istence of bistable operations.

Figure 6 shows the dynamical scenario of the delayed

map for g ¼ 0:51 and r¼ 2. For a � 3:4413, stable P4

branches within the cascade coexist with a SN4. As the pa-

rameter is increased, the main stable P4 solution and the

unstable one originated by the SN4 close together disappear-

ing in a reverse SN4 bifurcation (at a ¼ 3:5133). For

a � 3:815, a new SN4 adds to the unstable P4 solution gen-

erated by the previous interaction. As can be observed, ana-

lytical solutions (blue) are always in agreement with

numerical simulations (red). Moreover, they permit to visu-

alize the evolution of the unstable branches.

Odd delays not only control the interval where ŷ� is sta-

ble, via the modification of the P2 curve, but also change the

position of P4 orbits. As can be inferred from Figs. 5(c) and

5(d), the more intricate scenario is given by r 
 1ðmod4Þ.

TABLE III. Period-two solutions of the delayed logistic map.

Parity Criticality Solutions

Even a� 3 ¼ 0 ~Y 0 ¼
1þ a

2a

Y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�3Þðaþ1Þ
p

2a

Odd a� 3� 2g ¼ 0 ~Y 0 ¼
1þ aþ 2g

2a

Y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�3�2gÞðaþ1þ2gÞ
p

2a

TABLE IV. Critical conditions for the onset of P4 branches within the

period-doubling cascade developed by the delayed logistic map.

Delay classes ðmod4Þ Critical condition

r 
 0 a� 1�
ffiffiffi
6
p
¼ 0

r 
 1 a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 2gð4þ 3gÞ

p
¼ 0

r 
 2 a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 4gð1� gÞ

p
¼ 0

r 
 3 a� 1�
ffiffiffi
6
p
ð1þ gÞ ¼ 0
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For g < 0, P2 and P4 curves move to lower a values, but sep-

arating one from the other. Thus, the interval where P2 orbits

are stable is increased while that where the fixed point is sta-

ble is reduced. The SN4 curve occurs for a � aSN4 maintain-

ing the respective periodic window posterior to the period-

doubling cascade.

For g > 0, P2 and P4 branches within the cascade shift

similarly to greater a values. In contrast, SN4 curve moves

to a 	 aSN4, approximating to the previous dynamics. In

fact, SN4 passes through the P4 and even P2 critical curves

as the gain is incremented. This analytical scenario confirms

that P4 attractors can coexist with the stable P2 orbits [region

V in Fig. 5(c)] or the stable fixed point [region VI in Fig.

5(c)], inducing again bistabilities in the controlled system.

Figure 7 illustrates how the map can present a P2 orbit and

two P4 orbits (one stable and one unstable) simultaneously

for g ¼ 0:2 and r¼ 1.

The influence of the class r 
 3ðmod4Þ on the P2 and

P4 orbits is almost linear [Fig. 5(d)]. For g > 0, all critical

curves shift to a values larger than those of the original map,

extending the intervals where the fixed point and the P2

orbits are stable. The opposite occurs for g < 0. The onset of

FIG. 5. Critical curves of P2 and P4

solutions for different delay values

ðmod4Þ. (a) r 
 0; (b) r 
 2; (c)

r 
 1; (d) r 
 3. I: fixed point (FP);

II: FP þ P2 solution; III: FP þ P2 solu-

tion þ one P4 solution; IV: FP þ P2

solution þ three P4 solutions; V: FP þ
P2 solution þ two P4 solutions; VI: FP

þ two P4 solutions.

FIG. 6. Interaction of stable P4 solutions belonging to the period-doubling

cascade with two SN4 bifurcations for r¼ 2 and g ¼ 0:51. Red: numerical

simulations; blue: exact solutions obtained by the FD approach.

FIG. 7. Coexistence of stable P2 solutions with a SN4 bifurcation for r¼ 1

and g ¼ 0:2. Red: numerical simulations; blue: exact solutions obtained by

the FD approach.
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the solutions moves to lower a values. Moreover, since

curves intersects at the point ða; gÞ ¼ ð1;�1Þ, all the inter-

vals are compressed as control gain is decreased.

Analytical solutions up to period-four obtained by con-

sidering the same control gain (g ¼ 0:1) and different delay

classes are depicted in Fig. 8. All curves given by r 
 0

coincide with those of the uncontrolled logistic map (thick

solid lines). For r 
 2, the branch corresponding to the sta-

ble fixed point is kept equal to the original one (g¼ 0).

However, stable P2 branches are reduced since the onset of

the P4 orbits moves to smaller a values (thin solid lines).

The interval where the fixed point is stable enlarges when

odd delayed samples are used in the control law. Period-two

branches do not present appreciable changes for r 
 1 (thin

dashed line). However, they occupy the largest parameter

interval for r 
 3 (thick dashed line), since the appearance

of the P4 solutions is shift to greater a values. Delay class

r 
 3 seems to be appropriate to stabilize both fixed point

and P2 orbits simultaneously.

V. CONCLUSIONS

Analytical and exact expressions of the period-four

orbits exhibited by a family of n-dimensional quadratic maps

have been obtained via a frequency-domain viewpoint.

Critical conditions for the appearance of these periodic

attractors have been also presented. Developments are based

on a single-input single-output representation of the system,

the complete Fourier series decomposition of the orbit, and

the application of the harmonic balance method. The result-

ing set of four quadratic polynomial equations is solved

thank to the use of Gr€obner bases. A similar procedure could

be follow by considering higher-periodic orbits. The greater

the period, the more complex the resolution of the balance

equations. The same could occur if maps are composed of

higher-order nonlinearities.

A generalized scalar quadratic map and a delayed logis-

tic model have been studied in detail to illustrate the applic-

ability of the results. In the case of the controlled map, it has

been shown that the stability range of the fixed point cannot

be modified if an even number of delays is considered. Even

delays congruent with two (modulus four) permit to shift the

onset of period-four branches, increasing/decreasing the

interval where period-two orbits are stable. As it has been

described, this delay class can also cause that the map exhib-

its two stable period-four orbits simultaneously. All the

oscillations with period up to four can be fully changed by

using odd delays in the feedback law. However, it could

occur that a period-four attractor coexists with the stable

fixed point/period-two orbit if an odd delay value congruent

with one (modulus four) is considered.
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APPENDIX A: FD REPRESENTATION

The application of the z-transform47 to the linear part of

system (2) results in

z½XðzÞ � x0� ¼ ðAþ BDCÞXðzÞ þ BEðzÞ;

YðzÞ ¼ CXðzÞ;

which is equivalent to

XðzÞ ¼ ½zI � ðAþ BDCÞ��1BEðzÞ þ ½zI � ðAþ BDCÞ��1x0z;

(A1)

YðzÞ ¼ CXðzÞ; (A2)

with X(z), E(z), and Y(z) standing for the z-transformation of

xk, ek, and yk, respectively, and x0 representing the initial

condition vector of xk. Substituting (A1) into (A2), it is

obtained

YðzÞ ¼ C½zI � ðAþ BDCÞ��1BEðzÞ

þ C½zI � ðAþ BDCÞ��1x0z: (A3)

Then, defining GðzÞ ¼ C½zI � ðAþ BDCÞ��1B and consider-

ing that x0 ¼ 0, the output reduces to YðzÞ ¼ GðzÞEðzÞ as

represented in Fig. 1.

APPENDIX B: SINUSOIDAL RESPONSE OF THE
LINEAR SUBSYSTEM

Without loss of generality, let us suppose that the input

of the linear subsystem is a sinusoid of the form

ek ¼ E1 sinðxkÞ ¼ E1ðeixk � e�ixkÞ=2i. Since its z-trans-

form47 is

E zð Þ ¼
E1 sin xð Þz

z� eixð Þ z� e�ixð Þ ;

output (A3) becomes

FIG. 8. Analytical solutions up to period-four of the delayed logistic map by

considering g ¼ 0:1 and different delay values: (-) r 
 0; (-) r 
 2; (- -)

r 
 1; (- -) r 
 3.

113113-10 M. B. D’Amico and G. L. Calandrini Chaos 25, 113113 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.49.228.32 On: Mon, 23 Nov 2015 18:48:30



Y zð Þ ¼ E1 sin xð ÞzG zð Þ
z� eixð Þ z� e�ixð Þ þ C zI � Aþ BDCð Þ½ ��1

x0z:

(B1)

Taking into account that G(z) and the term depending on x0

have the same poles (which are different from eix), (B1) can

be separated into two components, i.e.,

YðzÞ ¼ YeðzÞ þ YgðzÞ, where YeðzÞ and YgðzÞ contain those

terms of the general solution Y(z) that originate in the poles

of E(z) and G(z), respectively.48,49 If G(z) is stable (all its

poles have modulus less than one), the component of yk cor-

responding to the inverse z-transform of YgðzÞ will tend natu-

rally to zero with increasing k and then the steady-state

response is given by YeðzÞ. Nevertheless, it is always possi-

ble to find initial conditions so that YgðzÞ can be forced to

zero. Therefore, it can be assumed that the output Y(z) gener-

ated in response to the sinusoid is directly YeðzÞ.
Based on (B1), this specific solution can be written as

the partial fraction expansion47

Y zð Þ ¼ Rz

z� eixð Þ þ
�Rz

z� e�ixð Þ ;

where coefficient R is given by

R ¼ Y zð Þ z� eixð Þ
z

				
z¼eix

¼ E1 sin xð ÞG zð Þ
z� e�ixð Þ

				
z¼eix

¼ E1G eixð Þ
2i

:

Then, applying the inverse z-transform to Y(z), it results

yk ¼ Reixk þ �Re�ixk ¼ E1

G eixð Þeixk � G e�ixð Þe�ixk

2i
:

Notice that the response of GðeixÞ is conjugate-symmetric

with respect to zero, i.e., its value at �x is the complex con-

jugate of that at þx. This is due to the fact that replacing x
by �x gives the same result as replacing i by � i in eix. For

that reason, output yk can be reduced to the sinusoid

yk ¼ jY1j sin xk þ/Y1ð Þ ¼ jY1j
ei xkþ/Y1ð Þ � e�i xkþ/Y1ð Þ

2i
;

with coefficient Y1 defined as Y1 ¼ GðeixÞE1. As can be

seen, if the input of the linear block is a sinusoid of fre-

quency x, the output response will be a sinusoid of the same

frequency.48,49 The amplitude of the new sinusoid will be

jGðeixÞj times the amplitude of the original one, and its

phase will be equal to the phase of the input plus /GðeixÞ.
A similar procedure can be followed by considering an

input ek composed of a sum of sinusoidal terms. Based on

the superposition principle for linear systems, it can be found

that the particular solution yk will be a sum of the same terms

but modified in amplitude and angle by G(z) evaluated at the

respective frequencies. This property suggests also that if

yk ¼
Pp

r¼0 jYrj sinðrxk þ/YrÞ and the corresponding input

is ek ¼
Pp

r¼0 jErj sinðrxk þ/ErÞ, then Yr ¼ GðeirxÞEr with

r ¼ 0; :::; p. Hence, it results possible to define the so-called

harmonic balance equations (9)–(10) and (17)–(19) pre-

sented in Section III.

APPENDIX C: EXPRESSIONS CORRESPONDING TO
THE DISCRIMINANT OF THE CUBIC POLYNOMIAL IN
~Y 0 FOR DIFFERENT r CLASSES (mod4).

For r 
 1,

0 ¼ �135� 54a� 9a2 þ 28a3 þ 3a4 � 6a5 þ a6

þ 12ð27þ 12a� 2a2 � 4a3 þ a4Þg�12ð12þ 20a

� 6a2 � 4a3 þ a4Þg2 � 16ð5� 12aþ 6a2Þg3

� 12ð19� 8a� 4a2Þg4þ 408g5 � 172g6:

For r 
 2,

0 ¼ �135� 54a� 9a2 þ 28a3 þ 3a4 � 6a5 þ a6

� 24ð36þ 12a� 2a2 � 4a3 þ a4Þg�12ð192þ 44a

� 18a2 � 4a3 þ a4Þg2

� 16ð203þ 24aþ 12a2Þg3�4ð633þ 24a� 12a2Þg4

� 1032g5 � 172g6:

For r 
 3,

0 ¼ �135� 54a� 9a2 þ 28a3 þ 3a4 � 6a5 þ a6

þ 12ð9� 24aþ 8a2 þ 4a3 � a4Þg�8ð63� 12aþ 10a2

� 4a3 þ a4Þg2 þ 32ð9� 4aþ 2a2Þg3

� 16ð7þ 2a� a2Þg4 � 64g5:
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