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A phenomenological approach was used to obtain critical information about the structure and

electrical properties of ultra thin Ba0.05Sr0.95TiO3 (BSTO) layers over Nb electrodes. The method

allows, in a simple way, to study and to optimize the growth of the barrier in order to improve the

performance and application of Josephson junctions. A very good control of the layer thickness

with a low roughness was achieved during the deposition process. The BSTO layers present an

energy barrier of 0.6 eV and an attenuation length of 0.4 nm, indicating its good insulating

properties for the development of Josephson junctions with improved performance. VC 2012
American Institute of Physics. [doi:10.1063/1.3675332]

A Josephson junction (JJ) can be thought as two super-

conducting layers separated by a thin insulating layer, a nor-

mal layer or even a depressed superconducting layer.1 Due

to the proximity effect, Cooper pairs can go through the bar-

rier without any voltage drop across the junction. According

to the Josephson equations, if a DC voltage is applied on the

junction, the phase shift between the superconducting layers

induces an ultra fast AC superconducting current (in the

range of 1–1000 GHz).1 JJ has many technological applica-

tions,2 e.g., magnetic and bolometric sensors, fabrication of

volt standards,3 and ultra-fast microelectronics based in rapid

single flux quantum logic. However, the development of

complex devices based in Josephson junctions technology is

not easy; especially for high transition temperature (high Tc)

superconducting materials.4 One of the main problems is

that in order to fabricate these devices, a large number of JJ

must be integrated together and a small dispersion of the

junctions’ characteristics must be achieved.5 Additionally, to

overcome the thermal noise and to reduce the devices

response time, a high IcRn factor (i.e., junction energy) is

required, where Ic is the critical current of the junction and

Rn its normal resistance. Higher IcRn or junction energy can

be achieved by reducing the barrier thickness and increasing

the effective superconducting coupling across the electrodes.

In order to increase the JJ energy and improve the homoge-

neity of the JJ array, a profound knowledge and control of

the insulating barrier must be achieved.

Conductive atomic force microscopy (CAFM) has

become an excellent technique to study and characterize

insulating barriers for tunneling devices, i.e., magnetic tun-

nel junctions or Josephson junctions. However, even if im-

portant research has been done regarding the development of

magnetic tunnel junctions6–8 and spin filters,9 very little

work has been done in the study and characterization of insu-

lating barriers for the development of Josephson junctions

using CAFM.10 The characteristics of the barrier, e.g., rough-

ness, energy, and the attenuation length of the current,

depend on the electronic properties of the electrodes. More-

over, we have recently found that even substrate roughness

can modify the quality of the insulating barrier.11 This indi-

cates that careful measurements of the actual system are

needed in order to proper characterize and optimize the bar-

rier properties of the junctions.

Recently, we have used a phenomenological approach to

analyze the electrical transport through an insulating barrier

in ferromagnetic/insulating bilayers using conducting atomic

force microscopy.11 CAFM is proving to be a cost and time

efficient way to study these systems compared with junctions

fabricated by traditional micro and nano-fabrication meth-

ods. However, CAFM typical measurements are done for a

voltage tip much higher than the energy barrier, outside the

range of standard models and further work in the subject is

needed. In this work, the developed method has been applied

to the study of superconducting/insulating bilayers. The

objective is to validate the method in these systems and to

obtain critical information of ultra thin insulating barriers for

the development of niobium based Josephson junctions.

Nb/Ba0.95Sr0.05TiO3 (Nb/BSTO) bilayers were grown on

single crystal (100) Si substrates by DC and radio frequency

(RF) magnetron sputtering from stoichiometric metallic and

ceramic targets. The deposition of the samples was made at

room temperature in an Ar atmosphere of 10 mTorr. A RF

power of 6.4 W/in.2 was used in order to obtain a low deposi-

tion rate and improve the control and quality of the insulat-

ing barrier. The chamber pressure before deposition was
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decreased to �1 � 10�7 Torr in order to reduce the density

of impurities in the Nb electrode and to optimize its super-

conducting transition temperature. Bilayers were fabricated

with a BSTO layer thickness ranging from 0.5 nm to 2.5 nm,

grown over a niobium electrode with a thickness of 100 nm.

The nominal thicknesses of the insulating and the supercon-

ducting layers were established by a calibration of the differ-

ent deposition rates and controlling the deposition time.

Niobium films are type II superconductors with a transition

temperature of 9.25 K (Ref. 12), and BSTO is a ferroelectric

insulator. However, due to the low deposition temperature,

the BSTO layer is amorphous.

CAFM measurements were done in a Veeco Dimension

3100
VR

scanning probe microscope with a CAFM module,

using a boron doped diamond conductive tip in contact

mode. The probe polarization voltage was changed between

1.25 V and 6 V for all the samples, and the same pressure

during the scan was used, i.e., the same deflection set point

(0.5 V) was used. Different probe polarizations and deflec-

tion set points were used to verify that the basic results do

not depend on the measurements conditions. I(V) curves of

the bilayers with different barrier thicknesses were obtained

by CAFM in the “ramp” mode, in which the microscope

does not scan the x-y position (in-plane movement), but it

holds the tip steady in contact with the surface of the sam-

ples. The microscope “scans” the applied tip voltage and

measures the current for the different voltages. Several scans

are made and averaged in order to reduce noise and to

decrease the effect of electrical contact problems.

Figure 1 shows the topographic (left) and CAFM (right)

images of the Nb/BSTO bilayers for different thicknesses of

the insulating layer. The samples present a low roughness

(�0.5 nm) and a low density of surface defects (�0.01 def/

lm2). The low density of surface defects is important to

reduce the probability of short-circuits between the super-

conducting electrodes. BSTO layers present very good insu-

lating properties, and no current hot-spots or pinholes were

found for thicknesses greater than 0.8 nm, indicating a good

covering of the electrodes for these thicknesses. The mean

tunneling current decreases as the thickness of the insulating

layer increases. CAFM images present an important distribu-

tion of the tunneling current, which is typical for these sys-

tems and it is generally ascribed to a distribution of the

barrier thickness.7,11,13

Figure 2 presents the current-voltage (I(V)) characteris-

tic of the bilayers. The experimental data were fitted using

the phenomenological model:11

Ln
�

IðV; dÞ
�
¼ A0ðdÞ þ aðdÞ:LnðVÞ; (1)

where A0 and a depend linearly with the barrier thickness

(d), Eq. (1) can be rewritten as

Ln½IðV; dÞ� ¼ ða0 þ a0:dÞ þ ða0 þ a0:dÞ:LnðVÞ;

I ¼ ea0 Va0 e�
d
k; with k ¼ 1

ja0j � a0 � LnðVÞ ; (2)

where k is the attenuation length of the carriers in the barrier,

a0¼A0(d¼ 0), a0¼ a(d¼ 0), a0 ¼ @A0

@d , and a0 ¼ @a
@d (it should

be noted that a0< 0). The experimental data show a good

agreement with the proposed model. The current decreases

exponentially with the barrier thickness, and it presents a

potential growth with the applied voltage. The measured

FIG. 1. (Color online) Topographic (left) and CAFM (right) 15 lm � 15 lm

images of Nb/BSTO bilayers grown over Si with different BSTO thicknesses

(0.67 nm (1), 0.83 nm (2), and 1 nm (3)).

FIG. 2. (Color online) CAFM I(V) curves for the superconducting/insulat-

ing bilayers grown over Si. The solid lines are a linear fits of the experimen-

tal data (Log(I)¼A0þ a �Log(V)). The inset shows A0 and a as a function

of the barrier thickness (d).
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value of a0 (�3.4) is different than a0¼ 2, corresponding to

the Fowler-Nordheim regime, i.e., high polarization voltages

compared with the energy of the barrier.14 The value of a is

consistent with the values obtained for crystalline BSTO

layers grown over La0.75Sr0.25MnO3 electrodes.11 However,

in contrast with the experimental behavior observed for the

crystalline BSTO barrier in ferromagnetic/ferroelectric

bilayers, the amorphous BSTO layer present almost no de-

pendence of a with the layer thickness (a0 � 0). Indeed, I(V)

curves corresponding to samples with different thicknesses

of the BSTO layers are almost parallel. As a consequence,

a0:Ln (V) � 0, and there is no important change of the attenu-

ation length for increasing applied voltage (see Eq. (2)). This

could be related to the high applied voltages, much greater

than the energy of the barrier. I/Va0 for the bilayers with dif-

ferent thicknesses of the insulating layer was plotted as a

function of the applied voltage in a logarithmic scale (Figure

3). In general, no important variation with the applied volt-

age can be seen, putting in evidence the small change of the

carrier attenuation length with the tip polarization voltage

(Eq. (2)). This has already been observed for spin filter bar-

riers9 and has been ascribed to an experimental artifact origi-

nated in the influence of the tip pressure during the

measurement and when using the width of the current distri-

bution to calculate k. The authors conclude that a more reli-

able method to calculate the attenuation length is to use the

decrease of the mean current as a function of the barrier

thickness. It is not clear that this is the origin of the observed

behavior in our case. Equivalent measurements performed

on crystalline BSTO layers show the expected variation of k
with increasing voltage.11 Moreover, the observed behavior

in our samples is obtained from the mean current voltage

characteristics of the bilayers, measured using different ex-

perimental conditions and in different spots on the surface of

the sample. More studies in amorphous and crystalline bar-

riers using CAFM and standard macroscopic tunnel junctions

are being performed to obtain additional information.

The inset of Figure 3 presents I/Va0 as a function of the

barrier thickness measured at 2 V. The experimental data

seems to follow the expected linear behavior (Eq. (2)), and

the calculated attenuation length for Nb/BSTO bilayers is

around 0.4 nm. Considering that in the F-N regime
1
k ¼

8p
ffiffiffiffiffiffiffi
2:m�
p

3heV
/3=2,14 where h is the Planck constant, m* the

effective mass of the current carriers, and V is the applied

voltage. Using the calculated value for the attenuation

length, the upper limit of the barrier energy is /max� 0.6 eV

(considering m*¼ electron mass). The values of k and /max

indicate the good insulating quality of the barrier. These val-

ues are very similar to the corresponding values of k
(0.35 nm) and /max (0.6 eV) for high quality with low rough-

ness crystalline BSTO barriers grown by sputtering11 or high

quality SrTiO3 barriers grown by pulsed laser deposition.7

The I/Va0 distributions for the Nb/BSTO bilayers with

different thicknesses of the insulating layer are shown in

Figure 4. The lines are the adjusted functions considering a

Gaussian distribution for the thickness of the barrier and

using the phenomenological model for I(V,d) given by

Eq. (2). The only fitting parameter is the barrier roughness,

rd. The log-normal distribution fits very well the experimen-

tal data as expected from previous works.7,11,13 A very good

insulation of the bottom electrode can be achieved for thick-

nesses greater than 0.8 nm, with low conductivity values and

no presence of pinholes in the barrier. The simulated I/Va0

distributions indicate a low barrier roughness for the tunnel-

ing current of 0.36 nm, coherent with the total topographic

roughness of the sample (�0.5 nm). The experimental data

show a very good control of the deposition thickness for

ultra-thin BSTO insulating layers over Nb electrodes, with a

small barrier roughness. Tunneling seems to be the preferred

mechanisms for electrical transport through the barrier.

We have used a phenomenological approach to analyze

the electrical transport through ultra-thin BaSrTiO3 layers

grown over Nb electrodes. The proposed method allows, in a

simple and direct way, to study and to optimize the growth

of insulating barriers over superconductors’ electrodes in

order to improve the performance and application of Joseph-

son junctions. The tunnelling of the carriers seems to be the

main mechanism for electrical transport in these systems,

and the BaSrTiO3 layers present an energy barrier of 0.6 eV

with an attenuation length of 0.4 nm, indicating its good

insulating properties. The deposition method allows a very

FIG. 3. (Color online) I/Va0 (Ln(I/Va0)¼ a0 – d/k) as a function of the polar-

ization voltage for the Nb/BSTO bilayers with different thicknesses of the

insulating layer (d). The inset shows I/Va0 as a function of d for a polariza-

tion voltage of around 2 V. The line is a linear fit of the experimental data.

FIG. 4. (Color online) Experimental (open dots) and simulated (lines) I/Va0

distributions for Nb/BSTO bilayers grown over Si, for different BSTO

thicknesses.
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good control of the barrier thickness. These are promising

results for the development of Josephson junctions with

improved performance.
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