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One pot reaction of hydrated chloride salts of Fe(i) and Co(i)) with stoichiometric amounts of 2,2’-bipyri-

midine (bpym) in a methanol-acetonitrile mixture afforded the corresponding 1D homonuclear coordi-

nation polymers, [p-(bpym)MCl;],. Crystal structures of both complexes are isomorphous in the highly

symmetric orthorhombic space group Fddd. The 1D coordination polymers are composed of almost

orthogonal alternating bipyrimidine bridges linking the {MCl5} units. The magnetic behaviour of the Fe()
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compound can be well understood as a uniform S = 2 chain with an antiferromagnetic exchange inter-

action between metal ion sites. In the case of the Co(i) ion, also an antiferromagnetic interaction is oper-
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Introduction

Low-dimensional magnetic coordination polymers have
attracted much attention since the discovery of anisotropic
systems with fascinating physical properties, such as single-
molecule magnets and single-chain magnets." In order to
design 0D or 1D molecule-based magnetic materials, with well
defined and tuneable properties, it is important to choose
appropriate bridging ligands able to transmit effectively the
exchange interactions between the paramagnetic centers.
Among possible bridging units, small organic molecules with
coordinating donor atoms are especially interesting because of
their enormous synthetic versatility. Focusing on 1D coordi-
nation polymers, a common strategy for their preparation so
far has been to systematically block several coordination sites

of metal ions with terminal ligands and to link them through
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ative along the uniform chain, while at low temperatures a long range-ordering is observed due to spin
canting originating from the anisotropic behaviour of the Co(i) lowest energy Kramers doublets.

small ligands coordinating to the remaining vacancies. On the
other hand, the spontaneous self-assembly of such polymer
compounds upon mixing the starting metal ion source and
appropriate ligands becomes a widespread but not a strictly
rational alternative.”

The tetradentate 2,2"-bipyrimidine (bpym) ligand has been
extensively employed due to its remarkable ability to mediate
exchange interaction between transition metal ions®® and it
should easily allow growing of homometallic 1D chains.

1D polymers of Co(u) ions are particularly interesting due to
the high spin ground state anisotropy of this ion which may
lead to spin-canting or single chain magnetic properties
depending, among other factors, on the type of exchange inter-
action operative between the constituent Co(u) ions.

With this background, we decided to explore the reaction
between simple Fe(i) and Co(u) chloride salts and 2,2"-bipyrimi-
dine in organic media. To the best of our knowledge, up to this
report, the only known neutral homometallic 3d metal chloride
polymerized through this ligand was the Mn(u) derivative.> In
this work we are reporting the structural and magnetic charac-
terization of two new derivatives of this neutral [M"bpymCl,],
family, the Fe(r) and Co(u) 1D coordination polymers.

Results and discussion
Synthesis and crystal structure

One pot reaction of simple hydrated chloride salts of Fe(u) and
Co(u) with stoichiometric amounts of the potentially bridging
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ligand 2,2"-bipyrimidine (bpym) in a 1:1 methanol-aceto-
nitrile mixture afforded in high yield and high purity the corres-
ponding 1D homonuclear coordination polymers, [p-(bpym)-
FeCl,], (1) and [p-(bpym)CoCl,], (2), respectively. Both chain
compounds are built from the direct stringing of the MCI,
motif with the bpym ligand. It is important to note that the
solvent mixture becomes the key factor to obtain crystalline
compounds. Employing pure methanol or pure acetonitrile
immediately affords insoluble amorphous solids. The only pre-
viously reported member of this family, [p-(bpym)MnCl,],, was
prepared in a similar approach but employing water as a reac-
tion solvent.”

Both compounds, 1 and 2, are crystallizing isomorphous in
the highly symmetric orthorhombic space group Fddd. The
molecular structures will therefore be discussed jointly. The
crystal structure shows isolated 1D chains running parallel to
the ab plane (closest inter-chain M---M distances: 7.327(2) A
Fe---Fe in 1 and 7.374(1) A Co---Co in 2), and alternating their
growing axis orientation with an angle of exactly 90° among
them. The solvent molecules fill the space between chains.
The acetonitrile is arranged in a complete inter-chain channel
(Fig. 1). The methanol molecules are hydrogen-bond

Fig. 1

2 | Dalton Trans., 2013, 00, 1-7

interacting with chloride ligands of neighbouring chains while
the acetonitrile molecules exhibit N---H-C interactions’ with
bipyrimidine rings (see ESIT).

The 1D coordination polymers themselves are composed of
almost orthogonal (contiguous bipyrimidine planes comprise
a dihedral angle of ca. 86°) neighbouring alternating bipyrimi-
dine bridges linking the {MCl,} units. This affords a ladder-
type arrangement with M-M-M angles of ca. 118° in 1 and
ca. 122° in 2 and intra-chain M-M distances of 5.938(1) A in 1
and 5.797(1) A in 2 (Fig. 2 and Table 2). The presence of a crys-
tallographically imposed inversion center in the middle of
{M-bpym-M} motifs leaves the coordinated chloride ligands
alternating in 180° at both sides along the chain. Additionally,
due to a two-fold rotation axis a unique M-ClI bond distance is
found with the following values: 2.3771(13) A in 1, and
2.357(2) A in 2. In spite of the equivalency of the chloride
ligands, asymmetry in the two M-N distances is observed:
Fe(1)-N(1) = 2.215(4) A and Fe(1)-N(2) = 2.249(4) A; and Co(1)-
N(1) = 2.161(5) A, Co(1)-N(2) = 2.194(6) A. All M-N and M-Cl
bond distance values are in agreement with the reported ones
in closely related compounds. For example (p-bpym)-[(bpym)-
Fe''Cl,],® exhibits Fe-Cl distances of 2.402 A and 2.390 A

S P
S22
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Crystalpacking molecular representation of coordination polymers 1 (top) and 2 (bottom). Hydrogen atoms are omitted for the sake of clarity.

This journal is © The Royal Society of Chemistry 2013
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Fig. 2 Ellipsoid representation (at 30% probability level) of three repetitive units of coordination polymers 1 (left) and 2 (right). Hydrogen atoms are omitted for
the sake of clarity. Symmetry codes: a: 0.25 — x, 0.25 — y, z; b: 0.5 = x, =y, 0.5 — 7z, ¢: 0.25 + x, —0.25 +y, 0.5 — z.

and Fe-Npyidging bpym distances of 2.224 A and 2271 A
while the chain compound [Fe"(bpym)(SCN),],° shows
Fe-N bond distances ranging between 2.217 A and 2.266 A.
For the cobalt compound 2, the Co-Cl bond distances 2.376 A
and 2.399 A compare well with those found for cis-
Co"(bpym),Cl, ** while Co-N bond distances range between
2.139 A and 2.167 A. The cationic chain [Co"(bpym)-
(H,0),]*",** exhibits Co-N bond distances between 2.166 A
and 2.177 A.

It should be noted that the reported bipyrimidine bridged
1D coordination polymer, [p-(bpym)MnCl,],, was crystallized
from water affording a monoclinic cell.” Hence, there is no iso-
morphism with the structures of [p-(bpym)FeCl,], (1) and
[-(bpym)CoCl], (2).

To our knowledge, there are only eight structurally charac-
terized 1D regular homonuclear coordination polymers
[n-(bpym)ML,],, systems for 3d transition metals,*'> with only
one Fe example’ and one Co example."" With these new
examples reported herein, the [p-(bpym)MCl,],, family becomes
the biggest of them summing up just three members.

Magnetic properties

DC magnetic susceptibility of the 1D coordination polymers 1
and 2 was recorded in the temperature range 2-300 K under
an applied field of 0.1 T (Fig. 3). In the case of compound 1,
the y,,T value at 300 K of 3.07 cm® K mol™" is in close agree-
ment with the expected value of 3.00 cm® K mol™" for isolated
high spin Fe(u) ions (g = 2.00). The almost temperature inde-
pendent value for y,,,T with lowering the temperature down to
100 K is followed by a continuous decline upon further cooling
down to 2 K, indicative of weak anti-ferromagnetic interaction
between neighbouring Fe(u) ions, further confirmed by the
maximum observed at ca. 20 K in the y,, vs. T plot. At 10 K a
plateau of 0.058 cm® mol ™" is reached before y,, drops again to
reach a second plateau at 2 K. For compound 2, the y,,T value
at 300 K of 2.59 cm® K mol ™" is well above the expected value
of 1.875 cm® K mol ™" for an isolated high spin Co(u) ion (g =
2.00). If first order orbital contributions to the spin ground
state are considered a g value of 2.35 (y,T = 2.59 cm® K mol™*
for an isolated HS Co(u)) is not unusual for this particular ion,
although in this case exhibiting a high degree of quenching.'®
With decreasing temperatures below 100 K the y,,,T values for
2 decrease considerably, indicating a weak anti-ferromagnetic
interaction between neighbouring Co(u) ions. In the yy, vs. T
plot a maximum is observed at 18 K. However, upon further

This journal is © The Royal Society of Chemistry 2013
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Fig. 3 ymTvs. Tand y, vs. T plots in the range 2-300 K at 0.1 T of compounds
1 (top) and 2 (bottom). Open circles: experimental data. Full line: best fittings
with the Fisher model; dashed line: best fittings with the ring model; dotted
line (only for 1): best fitting including a ZFS term. See text for fitting details.

cooling, a sharp increase in y,T is observed close to 10 K
suggesting collective long-range effects. The low temperature
1/ym vs. T plot profile (Fig. 4) excludes a simple explanation
based on some paramagnetic impurity and supports the long-
range interaction hypothesis.

The chain nature of complexes 1 and 2 does not allow
employing a full spin Hamiltonian for the simulation of the
magnetic behaviour. Furthermore, in the case of compound 2,
the strong anisotropic Co(u) ions preclude a spin-only model-
ling approach. At the same time, the almost negligible
decrease of y,,T upon cooling down to 100 K evidences a sig-
nificant quenching of the orbital momentum contribution,
further confirmed by the only moderately deviating high temp-
erature y,,T value from the expected spin-only value."

Dalton Trans., 2013, 00, 1-7 | 3
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Fig. 4 4.~ vs. T plot zoomed in the range 2-140 K at 0.1 T (top) and FC-ZFC
magnetization plot at 50 Oe in the range 1.8-10 K (bottom) of compound 2.

We therefore applied essentially two spin-only models to fit
the magnetic data in nearly the whole temperature range
neglecting any kind of orbital contributions:

(a) Fisher model'® for an infinite chain of identical § =2 (1)
and S = 3/2 (2) spins with an isotropic coupling constant J:

_ Npg? (1+uw
= SEH VT (1)
u = coth (2]5(:;— 1)> - (ZJS(:T+ 1))1 (2)

(b) Rings from 4 to 8 metal units as models for the infinite
1D chain, with the corresponding HDvV Hamiltonian:

H= —2]( Z (S‘z : 31’+1) + 8 3;1) 3)

The simulated susceptibilities were obtained employing the
MAGPACK package.'” Simulation with more than eight
metallic sites was outside our computing possibilities because
of computing memory depletion due to the huge dimension of
the basis sets matrix.

For compound 1 an axial ZFS contribution arising from
local Fe(u) ions D parameter, usually non-negligible for this

4 | Dalton Trans., 2013, 00, 1-7

ion configuration, was included adding the following term to
the Hamiltonian of eqn (3):

) .
H:EDZ:SZI. (4)

For the fitting of the susceptibility data of compound 1
(Fig. 3), only values down to 15 K were used due to the badly
characterized low temperature behaviour. Best fitting para-
meters with all the different approaches are listed in Table 1.
The ring approach affords better fittings than the Fisher
model, although no great modifications are observed in the
final parameters g and J. However, it is well known that the
semi-classical basis of the Fisher model makes it more suc-
cessful for large S values. Using a 4- or a 6-membered ring
model provides almost negligible differences in the fittings,
showing that even a small ring model is suitable for describing
the magnetic behaviour of polymeric 1D Fe(u) compound 1. As
also considered in previous reports, the Fe(i) ion high-spin d°
configuration demands testing the existence of sizeable zero-
field splitting contributions.>*"*'* In fact, the low tempera-
ture region of the susceptibility data (Fig. 3) cannot be pre-
cisely modelled with only Hamiltonian of eqn (3). Including
an axial ZFS contribution by means of eqn (4) improves the

Table 1y, Tvs. T data fitting results”

1

2

(a) Fisher
(eqn (1) + eqn (2))

(b) HDVV ring
(eqn (3) +eqn (4))

g=2.11+0.02
J=-1.8+0.1cm™*
(R=3.84x107")

n=4
£=2.10 = 0.01
J=-1.63+0.04 cm~
(R=2.94x107%

1

g =2.08 (fixed)
J=-1.35cm™" (fixed)
D=10.8+0.7cm™"
(R=7.56x107")

n=6
£=2.10 + 0.01
J=-1.67+0.05cm™"
(R=3.67x107%

g=12.46+0.03
J=-2.9+03cm™*
(R=8.01x107")

n=6
g=2.45+0.03
J=-2.6£0.3cm™
(R=6.65x107"

1

n=8
g=2.45+0.03
J=-2.6+03cm™*
(R=6.83x107%)

“ Agreement factor, R = 1/(N — 1p)[Z(rcate? = XobsT)/Z (ZobsT)°]"?, N: the
number of data points, 7,: the number of fit parameters.

Table 2 M---M distances and exchange coupling constants in the [M(bpym)-

Cl5], family

M---M distance/A Jlem™
Mn*“ 6.164(1) -0.6
Fe? 5.938(1) -1.3
co? 5.797(1) -2.6

“Ref. 5. ” This work.

This journal is © The Royal Society of Chemistry 2013
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low temperature fitting. However, in order to obtain a well
defined value for the D parameter it is necessary to add some
restraints in the fitting as there is a strong correlation between
J and D parameters. After a set of simulations at different fixed
D values in the range 0-20 cm™', suggested by previous
reported values in related systems, we found that g and J
values can be reasonably fixed. The g value remains constant
at g = 2.09 while the J value ranging between —1.2 cm™' and
—1.5 em™" can be fixed at a mean value of —1.35 cm™". Under
these restraints the obtained value for the D parameter is
10.8 + 0.7 cm ™ ". Interestingly, the inclusion of the ZFS term, in
addition to the improvement of the low temperature data, also
reproduces the striking plateau at 10 K in the y,, vs. T profile
although shifted in the temperature scale with respect to the
experimental data (see ESIf). The obtained value for the
exchange coupling constant is in good agreement with pre-
vious reported Fe(i1) bpym bridged examples.®***1*

For compound 2 fitting of the magnetic data (Fig. 3) was
employed down to 15 K. The sharp increase in y,, below this
temperature is probably related to cooperative effects. This
limitation precludes a precise determination of the exchange
coupling constant and completely avoids any attempt at
including anisotropic components to the simulation models,
as for example in Rueff approximation.'® Best fitting para-
meters with all the different approaches are listed in Table 1.
As also observed for compound 1, the Fisher model recovers
the right values for the relevant g and J parameters but the
overall fitting quality is poorer than the ring approach model.
Increasing the ring size above six cobalt sites does not improve
the experimental data fitting. The high g value of 2.45 for a
Co(u) ion is owing to the not considered orbital contribution
under a spin-only modelling. In spite of this, the obtained
value for the exchange coupling constant is in good agreement
with other reported Co(u) bpym bridged examples.®'"*°

To further clarify the magnetic behaviour of compound 2 at
low temperatures, the temperature dependencies of the zero-
field-cooled (ZFC) and the field cooled (FC) magnetization
were measured at a low field of 50 Oe (Fig. 4). The obvious
divergence of the ZFC and FC data below 4 K indicates long-
range magnetic order, which is consistent with the maxima in
' and the nonzero y” signal around 3 K in the ac susceptibility
at 1500 Hz (Fig. 5). The isothermal magnetization with the
field up to 70 kOe at 1.8 K is depicted in Fig. 5. The initial
increase of magnetization shows a slight positive curvature
and is not linear with the field up to 10 kOe. It becomes then
almost linear up to 0.609Np at 70 kOe, far from the theoretical
saturation magnetization of the Co(u) ion, suggesting that
there is an overall antiferromagnetic coupling between Co(u)
ions in agreement with the susceptibility data. These results
suggest that a spin canting effect along the 1D antiferromagne-
tically coupled Co(u) ions may be operative. Inter-chain inter-
actions between the residual moments might propagate
through short-contacts involving the solvent molecules
affording a weak long-range ordering. A few examples of this
type of behaviour have been previously reported for other Co(u)
1D chains.?® It is well known that two mechanisms lead to

This journal is © The Royal Society of Chemistry 2013
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Fig. 5 AC susceptibility measurements at 0 DC field with a 3 Oe driving field
and 1500 Hz frequency in the range 1.8-3 K (top); DC magnetization plot at
1.8 K up to a 70 kOe external field (bottom). Both graphics correspond to com-
pound 2 data.

spin canting: (i) magnetic anisotropy and (ii) antisymmetric
exchange.” However, while the occurrence of antisymmetric
interactions is not compatible with the crystal structure of 2
showing an inversion centre between the bridged Co(n) sites,
the observation of the spin canting can still be attributed to
the single-ion anisotropy of the Co(u) ions.

Conclusions

We have successfully prepared and structurally characterized
two new members of the [M(bpym)Cl,],, family of neutral 1D
coordination polymers. The Fe(u) and Co(u) containing deriva-
tives add to the only one reported Mn(u) compound. Both new
compounds crystallize isostructurally in well isolated alternat-
ing polymeric chains. The magnetic behaviour of the Fe(u)
compound can be well understood as a uniform S = 2 chain
with antiferromagnetic exchange interaction between the
metal ion sites. A ZFS contribution expected for this ion affects
the low temperature data where an anomalous feature is
observed. In the case of the Co(u) ion, also antiferromagnetic
interactions are operative along the uniform chain. The low
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temperature behaviour suggests a long range-ordering origi-
nating from spin-canting due to the anisotropy of the Co(u)
lowest energy Kramers doublets. These two new examples
constitute a further contribution towards the design of homo-
nuclear polymeric 1D systems with potential interesting
magnetic properties, starting from simple building units in
simple one pot reactions.

Experimental
Material and physical measurements

2,2"-bipyrimidine was prepared following a previously reported
procedure.”” All other chemicals were of reagent grade and
used as received without further purification. Elemental ana-
lyses for C, H and N were performed on a Foss Heraeus Vario
EL elemental analyzer. Magnetic measurements were per-
formed with a Quantum Design MPMS XL SQUID magneto-
meter. DC measurements were conducted from 2 to 300 K and
from 0 kOe to 70 kOe. AC measurements were performed at
the maximum available frequency of 1500 Hz with an AC
driving field amplitude of 3 Oe and under no applied DC field.
All experimental magnetic data were corrected for the diamag-
netism of the sample holders and of the constituent atoms
(Pascal’s tables).

Preparation of [Fe(p-bpym)Cl,],-1.5H,0 (1) and
[Co(u-bpym)CL,],-1.5H,0 (2)

0.5 mmol of FeCl,-4H,0 (0.15 g) (1) or CoCl,-6H,0 (0.12 g) (2)
were dissolved in 50 ml of methanol. To the resulting clear
solution, a solution of 0.5 mmol (0.08 g) of 2,2-bipyrimidine
in 50 ml of acetonitrile was added under continuous vigorous
stirring. Immediately a dark red solution was obtained. It was
then left undisturbed at room temperature and after a few
hours dark red block crystals suitable for X-ray single crystal
characterization were obtained. One specimen was separated
for this purpose and the remaining solid was filtered, washed
with acetonitrile and methanol and air dried.

(1) Yield: 0.106 g, 68% (based on Fe(bpym)Cl, units). Anal.
caled for CgHoCl,FeN,O, 5 C: 30.80, H: 2.91, N: 17.96 Found: C:
30.24, H: 2.85, N: 17.84. (2) Yield: 0.126 g, 80% (based on
Co(bpym)Cl, units). Anal. caled for CgHoCl,CoN,O, 5 C: 30.50,
H: 2.88, N: 17.79 Found: C: 30.17, H: 2.82, N: 17.89.

X-ray structure determination

Crystals of 1 and 2 suitable for X-ray diffraction were obtained
directly from the synthetic procedure, collected from the
methanol-acetonitrile solution and mounted in a glass fibre.
The crystal structure was determined with a Bruker Smart
APEX II CCD area-detector diffractometer using graphite-
monochromated Mo-Ka radiation (A = 0.71073 A) at 173 K.
Data were corrected for absorption with SADABS™ using a
multi-scan semi-empirical method. The structure was solved
by direct methods with SHELXS-97>* and refined by full-matrix
least-squares on F”> with SHELXL-97.>* Hydrogen atoms were
added geometrically and refined as riding atoms with a

6 | Dalton Trans., 2013, 00, 1-7

uniform value of Ui, with the exception of the hydrogen
atoms of the solvent methanol and acetonitrile molecules that
were not included in the model due to the extensive disorder-
ing of these moieties.

In both structures, the acetonitrile solvent molecule is dis-
ordered around a 2-fold rotation axis and was modelled as two
split positions with identical occupation factors. In the case of
the methanol solvent molecule, it is disordered around two
perpendicular 2-fold rotation axes and was modelled as six
and four split positions with identical occupation factors in
compounds 1 and 2, respectively.

Crystal data

(1) Ci0.50H¢CLFeN5Og 59, M = 336.95, orthorhombic, a =
11.978(4), b = 16.464(5), ¢ = 29.114(9) A, V = 5741(5) A’, T =
173 K, space group Fddd (no. 70), Z = 16, 15768 reflections
measured, 1739 unique (R;, = 0.11), 1289 observed. R, = 0.058,
0.079 (all data), wR, = 0.145, 0.152 (all data), GooF = 1.074. (2)
Ci10.5HsClgCoN50y 5, M = 340.03, orthorhombic, a = 11.7256(14),
b = 16.5129(19), ¢ = 29.182(3) A, 5650(1) A, T = 173 K, space
group Fddd (no. 70), Z = 16, 9531 reflections measured, 1513
unique (R, = 0.097), 1100 observed. R, = 0.079, 0.106 (all data),
WR, = 0.174, 0.168 (all data), GooF = 1.236.

The main bond distances and angles for both compounds
are listed in the ESI.f CCDC 928716-928717 contains the sup-
plementary crystallographic data for this paper.
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