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Highlights 

Conductive fabrics electrodeposited with Iridium Oxide films can 

measure pH change.  

A fully stretched Stainless steel mesh shows the best overall 

response to pH change. 

A sweat pH measurement in human skin shows a relative error of 

4% when compared with a standard method 
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Potentiometric textile-based pH sensor
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UNT. Av. Independencia 1800, 4000 – San Miguel de Tucumán, Argentina.

Abstract

Determining the pH of sweat provides valuable information for athletes and pa-

tient monitoring. This work presents a textile-based, highly sensitive pH sensor

for pH determination. Three conductive fabrics (Argenmesh, Ristop silver and

Stainless steel mesh (SSM)) were modified with a pH sensitive electrodeposited

Iridium Oxide Film (EIROF). The three electrodeposited fabrics were character-

ized by impedance measurements. The Stainless Steel Mesh showed the best sen-

sitivity to pH changes and therefore was selected for further experiments. Two

configurations of this fabric were evaluated, looking for improvement in pH sen-

sitivity and temperature dependence. The best result was obtained with the con-

figuration that maximizes the contact surface between the stainless steel fibers,

showing an error of 0.15% in the pH measurement of a buffer solution. This con-

figuration was also used to perform in vivo measurements, obtaining an error of

4% when compared to the measurements performed with a commercial pH test
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strip. The implementation of sensor into textiles brings some advantages such

as comfort, biocompatibility and washability, among others; making the future

incorporation of a sensor into a garment very possible.

Keywords: pH sensor, EIROF, Nanostructured electrode, Wearable, Athletes

monitoring.

1. Introduction

Nowadays, the continuous monitoring of health status and, more specifically,

physiological parameters is in growing demand among high performance athletes

and the medical community. High performance athletes need an exhaustive con-

trol of their physiological variables in order to reach optimal performance, while5

patient monitoring would be very useful for early detection of pathologies and

emergencies.

Sweat is a good option to monitor valuable information about the physiologi-

cal status of the subjects [1]; being perspiration pH one important parameter to be

evaluated. The information provided allows athletes to know when it is necessary10

to rehydrate themselves [2] [3] ; or it could be used to monitor chronic wounds,

because pH provides wound condition information and can aid in determining

wound response to a specific treatment [4]. In addition, changes in pH of the skin

take part in the development of skin disorders such as dermatitis, ichthyosis and

fungal infections [5].15

In recent years, wearable technology has been the subject of much study due

to the possibility of remotely and continuously monitoring a subject, allowing a

rapid response to any change in physiological parameters. Wearable technology

always includes one or several sensors incorporated into garments. Sweat-based
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wearable sensors have emerged in the last few years for metabolites [6] [7], elec-20

trolytes [8] [9] and pH measurements. Regarding pH measurements, Nakata et al.

[10] designed a flexible sweat chemical pH sensor sheet based on an ion-sensitive

field effect transistor. Although being a good option for low-cost, disposable and

wearable applications, this sensor requires sophisticated fabrication equipment

and temperature compensation. In the same year, Salvo et al. [11] presented an-25

other pH sensor that used graphene oxide (GO) to detect the parameter changes;

the GO is coated over the working electrode of a commercially available screen

printed-board (C220BT, 33 x 10 x 0.5 mm, Dropsens). Nyein et al. [12] developed

a fully integrated wearable platform that includes measurement of pH in body flu-

ids using an ion-selective electrode (ISE) patterned on flexible PET substrate, that30

detects H+ by deprotonation of polyaniline. Bandodkar et al. [13] also designed

an ISE for pH detection based on polyaniline, but in this case the substrate was a

disposable tattoo. Another pH sensor was developed by Caldara et al. (Caldara et

al. 2012 [14] and 2016 [15]); they functionalized a cotton fabric with a colorimetric

and atoxic pH indicator and designed the electronics capable of monitoring the35

fabric color. Other authors used flexible and adhesive microfluidic devices able

to harvest skin sweat to develop wearable pH sensors. Curto et al. [3] imple-

mented a colorimetric and disposable chemical barcode device that incorporates

ionic liquid hydrogels as sensitive element, while, the approach of Koh et al. [7]

consists of a paper-based colorimetric sensor. Although several approaches for40

wearable pH sensors have been proposed, the state of the art of textile-based ones

is still poor, particularly if the desired features include low cost, simple hardware

requirements and reusability.

It has been demonstrated that Iridium Oxide is sensitive to pH [16]. In addi-

tion, electrodes modified with IrO2 have been used in electrostimulation experi-45

3
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ments, which proves its biocompatibility. A recent work by Chen et al [17] pre-

sented iridium oxide coatings for neural interface applications. In this work, the

authors obtained a cell viability close to 100%, which is higher than the viability

obtained with indium tin oxide coated glass, also a biocompatible material. Fur-

thermore, Göbbels et al showed the biocompatibility of iridium oxide by growing50

neuronal cells over coated electrodes [18].

The work presented here describes the design, development and evaluation

of potentiometric textile-based pH (PTBpH) sensors that consist of a conductive

textile material with an Electrodeposited Iridium Oxide Film (EIROF). The elec-

trodeposition was achieved following a previously reported protocol [16]. Differ-55

ent conductive textile materials with EIROF (Argenmesh, Ristop Silver and Stain-

less steel mesh, LessEMF, Latham NY, USA) were analyzed in order to determine

which one presents greater sensitivity to pH variations and how temperature af-

fects them. Among the evaluated materials, Stainless steel mesh textile showed

the best performance for in-vivo measurements, with a 4% relative error when60

compared with a standard method. The designed sensors are useful to carry out

perspiration pH measurements and could be easily incorporated into wearables.

2. Materials and methods

2.1. Conductive textile material

Three different conductive textiles were used in this work: Argenmesh, Ristop65

silver and Stainless steel mesh (SSM), all described by Goy et al. [19]. Briefly,

Argenmesh fabric is composed of Nylon (Ny) threads where 55% of them are

coated with Silver (Ag); Ripstop fabric is also made of Ny threads, but in this case,

all of them are coated with Ag; and Stainless steel mesh fabric, which is composed

4
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of 100% surgical stainless steel threads. It is remarkable that the wearability and70

comfort of conductive fabrics is very similar to traditional ones, which suggests

that the sensors fabricated with these materials could be easily incorporated into

garment without generating any disturb to the user.

Taking into consideration that SSM presents a low density of threads [19], this

textile was folded in order to form a double layer and present a higher density.75

2.2. Electrodeposition

The electrodeposition was performed in a tripolar electrochemical cell, con-

sisting of a hemispherical stainless steel counter electrode, an Ag/AgCl reference

electrode and the conductive fabric as working electrode. These textiles were cut

into strips of approximately 10 cm long by 3 cm wide. They were adjusted on an80

acrylic cylinder by seals and an insulating material to delimit a circular area of

approximately 1.5 cm2 (See Figure 1). The acrylic cylinder is necessary in order to

provide a mechanical support for the fabrics. This support allows immersing the

fabrics into a solution, or placing them over the skin.

Figure 1: Configuration of the conductive fabrics (2) for electrodeposition and evaluation, where 1
is the non-conductive seal and 3 is the acrylic cylinder.

The whole procedure was performed using a potentiostat (Solartron R©12508W,85

5
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Bognor Regis, UK), which consists of a Frequency Response Analyzer (Solartron R©1250)

and an electrochemical interface (Solartron R©SI1287).

The electrodeposition solution was prepared following the Yamanaka proce-

dure [20] by dissolving 4 mM IrCl4 in 40 mM oxalic acid, followed by a slow

addition of K2CO3 up to reaching a final pH of 10.3. The solution was then stirred90

until there was a complete dissolution of all materials. After this, the solution was

kept in the dark for 8 days, until a blue color appeared. From this moment the

solution was ready to be stored in the dark at 4 ◦C for two or three weeks prior to

use.

Electrodeposition was made following a known potenciodynamic technique95

[21], which was slightly modified by Mayorga et. al. [16]. The modified technique

consisted of a combination of a cyclic potential composed by a triangular wave

(50 cycles between 0.0 and 0.55 V vs. Ag/AgCl reference electrode at a speed of

50 mV/s). This was applied to the fabric immersed in the previously described

solution, followed immediately by a rectangular potential pulsing (same poten-100

tial limits for up to 3000 pulses of 0.5 s each). The initial triangular waveform is

necessary to obtain adherent films. However, this initial potential cycling results

in the deposition of less than 5 mC/cm2 of EIROF [21]. The subsequent rectangu-

lar pulsing is necessary to obtain films with higher charge storage capacity (CSC).

The number of pulses will determine the CSC of the EIROF.105

Electrodeposition was carried out in a water bath at 30◦C. After the procedure

was completed, the conductive textile was kept submerged for 45 minutes in the

electrodeposition solution, and finally it was stored at room temperature in a dark

place.

6
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2.3. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS)110

The SEM and EDS studies were performed using a Zeiss Supra 55 VP scan-

ning electron microscope gently provided by the Centro Integral de Microscopía

Electrónica (CIME Universidad Nacional de Tucumán-CONICET).

2.4. Impedance and pH measurements

Impedance was measured before and after electrodeposition in the previously115

described tripolar cell by applying 10 mV AC (RMS), 0 V DC with a frequency

sweep between 1 and 65 KHz. These measurements were performed using a

Solartron R©1250 Frequency Response Analyzer.

The pH calibration measurements were conducted using standard solutions of

pH 4, 5, 6, 7 and 8 (Cicarelli R©). These measurements were performed using an120

experimental set that consists of a XR38 multimeter to measure the open-circuit

voltage variation of the working electrode vs. the Ag/AgCl reference electrode

due to the pH changes. All the experiments were performed at 35◦C, unless oth-

erwise noted. The temperature was controlled using an LM35 temperature sensor

attached to the conductive textile and a water bath with controlled temperature.125

The impedance measurements were performed using the potentiostat previously

described.

The sensor that presents the best overall response was selected by evaluating

the calibration curves. Using this sensor, pH measurements were carried out in:

1) a saline solution of pH 7 with similar salt concentration of human sweat (Na 0.9130

g/L, K 0.2 g/L, Ca 0.015 g/L and Mg 0.0013 g/L)[22] using the above described

experimental set. 2) The lower back sweat of a 25-years-old male who rode a

bicycle for 30 minutes. In this case, three bipolar measurements were performed

using the PTBpH electrode as working electrode placed on a 5 cm thick acrylic

7
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as a support, a commercial Ag/AgCl 3M electrode as reference, and the XR38135

Multimeter to measure the open-circuit voltage (Figure 2). Commercial pH test

strips Macherey-Nagel (Düren, Germany) -pH range between 5.4 to 7 with 9 pH

steps- were used as reference method. The body temperature at the moment was

36.5 ◦C.

Figure 2: A) EIROF conductive fabric with the best overall response, B) Ag/AgCl 3M electrode
used as reference.

3. Results and Discussion140

3.1. SEM and EDS

In order to confirm the electrodeposition of iridium oxide over the fabrics, SEM

and EDS studies were performed. Figure 3, 4 and 5 show Argenmesh, Ripstop and

SSM fabrics before and after deposition of EIROF:

All these figures show a major change in the morphology of the fabric as a145

consequence of the IrO2 electrodeposition. The presence of EIROF is confirmed

with EDS, showing the Ir peaks in the modified fabrics (white arrows indicate the

presence of these peaks).

8
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Figure 3: SEM and EDS for Argenmesh before electrodeposition (A and C) and after electrodepo-
sition (B and D).

Figure 4: SEM and EDS for Ripstop before electrodeposition (A and C) and after electrodeposition
(B and D).

Figure 5: SEM and EDS for Ripstop before electrodeposition (A and C) and after electrodeposition
(B and D).

9
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Table I shows the differences in weight% of Ag and Ir of the fabrics before and

after electrodeposition.150

Fabric Elemet Weight% before deposition Weight% after deposition
Argenmesh Ag 36.37 30.34

Ir 0 2.19
Ripstop Ag 33.51 19.75

Ir 0 0.01
SSM1 Ir 0 6.03

Table 1: Difference of the Weight% of Ag and Ir as a consequence of the electrodeposition conduc-
tive fabrics.

The analysis of SEM images and EDS results of Argenmesh and Ripstop fabrics

(Figure 4B) suggest that the change in the surface morphology of these fabrics is

more a consequence of the loss of silver than of the deposition of iridium oxide.

Regarding Ripstop Silver, the great decrease of silver in EDS results reinforces this

hypothesis (Table I).155

3.2. Electrodeposition

This section presents the results of impedance measurements. Figure 6 shows

the impedance for each textile before and after electrodeposition.

Figure 6A and 6B show an increase in the impedance magnitude after the elec-

trodeposition, but for SSM the impedance decreases (figure 6C).160

The interpretation of impedance variation of the fabrics after IrO2 electrode-

position is challenging since all fabrics does not have the same behavior. First,

it must be noted that Argenmesh and Ripstop Silver are made of nonconductive

threads with a silver coating, while Stainless Steel fabric is made of stainless steel

threads without coating. According to Table 1, the amount of silver after elec-165

trodeposition is reduced from 36.37 to 30.4 weight% in Argenmesh while, in the

case of Ripstop Silver, the Ag is reduced from 33.51 to 19.75 weight%. Therefore,

10
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Figure 6: Variation of the impedance magnitude for A) Argenmesh, B) Ripstop Silver and C) SSM
before and after electrodeposition.

some nonconductive threads could have been exposed after electrodeposition,

which would lead to a reduction of the conductive surface of the fabrics. On the

other hand, stainless steel threads were not modified, leading to a more effective170

electrodeposition (more IrO2 was electrodeposited, Table 1), with the consequent

impedance reduction (figure 6C).

Based on these observations and the results from EDS, it is hypothesized that:

a) For Argenmesh and Ripstop Silver, the lower quantity of electrodeposited IrO2

and the loss of Ag, lead to an impedance increase after electrodeposition; and b)175

For Stainless steel, the higher quantity of electrodeposited IrO2 plus no surface

modification produce a reduction of impedance. This last behaviour is expected,

11
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as was previously reported [16] and [21].

It is remarkable that –to the best of our knowledge- there are as yet no reports

of IrO2 electrodeposition on Ag. Therefore, the deep and detailed study of this180

subject would be very interesting for future investigations.

3.3. Calibration

After electrodeposition, the textiles were calibrated to determine pH. Figure 7

shows the obtained calibration plots.
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Figure 7: calibration plots for the three textiles immersed in buffer solutions with pH 4, 5, 6, 7 and
8. A) Argenmesh, B) Ripstop Silver, C) SSM. Insets show the response of the pure non-modified
electrodes with pH.

SSM (Figure 7C) presents the highest sensitivity (-47.54 mV/pH) and also a185

very good correlation coefficient (r2 = 0,993) (Table 2).
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Fabric Sensitity (mV/pH) r2

Argenmesh -25.25 0.997
Ripstop -17.15 0.98
SSM1 -47.54 0.993

Table 2: Sensitivity and linear correlation factor

The reaction occurring at the interface of the electrodeposited electrode is the

following (Mayorga Martinez et al., 2009) [23]:

2IrO(OH) + 2H+ + 2e− ←→ Ir2(OH)2 + H2O (1)

The Nernst equation, which relates the involved species in the redox process,

can be reduced to the following expression [23] :190

E = E◦ − 0.059pH (2)

A slope of -0.059 V/pH implies a Nernstian behaviour. This sensor presents a

sub-Nernstian response because the slope calculated from the calibration curve is

-0.047 V.pH−1 (Figure 7C).

The differences in sensitivity between the three fabrics can be explained con-

sidering the amount of electrodeposited IrO2 showed in Table I. Table II shows195

that Ripstop Silver presents the lower sensitivity and, also is the one with the

lower quantity of electrodeposited IrO2. Surprisingly, a quantity as low as 0.01

Weight% of electrodeposited IrO2 is enough to improve Ripstop pH sensitivity

after deposition (Figure 7B). In the case of Stainless Steel fabric the highest quan-

tity of electrodeposited IrO2 leads to the highest pH sensitivity of all fabrics.200

Since SSM presents the best overall response, a different configuration of this

fabric was also tested. This configuration consists in fully stretch the conduc-

13
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Figure 8: A) SSM before and after stretching. The arrows in the inset indicate the stretching direc-
tion. B) SSMWOS and SSMFE are presented for comparison.

tive textile in order to get a very good contact surface between the stainless steel

threads (Figure 8). At this point, great care must be taken to not exert too much

force that can distort the fabric. From now the SSM configuration without stretch-205

ing will be named SSMWOS in order to be compared with the fully stretched ver-

sion (SSMFE).

Figure 9 shows the calibration plot for the fully stretched SSM (SSMFE) elec-

trode in 5 different pH solutions.
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5 0
1 0 0
1 5 0
2 0 0

Vo
ltag
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Figure 9: Calibration plot for the SSMFE electrode.

Table 3 shows that SSMWOS presents a higher sensitivity when compared with210

SSMFE (-31,69 and -21,41 mV/pH respectively).One possible explanation of this

behavior is that, since SSMWOS is folded forming a double layer, it has more avail-

able surface for IrO2 deposition than in the case of SSMFE, which is expected tak-

14
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ing into account the considerations made in Section 3.2. The highest sensitivity

to pH occurs for the electrodes with the highest amount of electrodeposited IrO2.215

The r2 of the two configurations are quite similar presenting only a small differ-

ence.

Fabric Sensitivity (mV/pH) r2

SSMWOS -47.53 0,993
SSMFE -32.11 0,998

Table 3: Sensitivity and linear correlation factor for the SSMWOS and SSMFE fabrics.

3.4. Influence of temperature over pH measurements

The core temperature of the body remains in a range from 35 to 40◦C, and most

physiological and pathological variations of body temperature are in this range220

[24]. Given that the temperature has an influence over the pH measurements,

the same measurements performed with SSMWOS and SSMFE at 35◦C, were also

carried out at 40◦C. The results are presented in Figure 10.
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Figure 10: Response of the two SSM configurations at 35 and 40◦C A) SSMWOS, B) SSMFE

This figure shows that the SSMWOS configuration has a greater variation with

temperature than the SSMFE. Because of this, despite the fact that SSMWOS has225

a higher sensitivity, SSMFE was selected to perform the following pH measure-

ment. This decision was taken in order to avoid temperature compensation in pH

measurements.
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3.5. pH measurements

Considering that the typical pH of a human sweat during exercise covers a230

range from 5 to 7 [3], the pH of a saline solution with a similar salt concentration

of human sweat [22] (pH=7) was measured using the SSMFE configuration. The

sensor gave a response of 108.35 mV when submerged in the solution. The pH

was calculated by using equation from Figure 9, obtaining a value of 7.011. The

error in the measurement was calculated as:235

Error :
pH(sample)− pH(electrode)

pH(sample)
× 100 (3)

An error of 0.15% was obtained, demonstrating the good response of the sen-

sor.

Then, three pH measurements in real skin were performed using the SSMFE

electrode. The pH recording was carried out as previously described (section 2.4).

An average voltage of 120.2 mV was obtained with a standard deviation of 1.32240

mV. This voltage corresponds to a pH of 6.2, which was calculated by using the

equation showed in Figure 9. In order to compare these results with a standard

technique, the pH of sweat was measured with a commercial pH test strip. The pH

measurement with this reference method, gave a pH value of 6.5, which implies

a relative error (RE) of 4%. The pH readout obtained with the PTBpH sensor was245

achieved in a few seconds. The same RE was obtained by Curto et al. [3], but after

a measurement time of 30 minutes. This fact is considered a very good advantage

of the PTBpH sensors presented here.

It is important to remark that pH measurements are usually affected by ionic

strength. It is well known that most pH test systems are designed for lab use250

where solutions are highly buffered. However, low ionic strength solutions are

16
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poor conductors, and pH measurements could be inaccurate and noisy. In the

present case the sensor was calibrated in a buffer solution. The human sweat has

similar salt concentration to the buffer, making the ionic strength not an issue for

sweat pH measurement in the present case.255

As was mentioned, it is remarkable that the wearability and comfort of con-

ductive fabrics is very similar to traditional ones, which suggests that they could

be easily incorporated into garment. A possible configuration could be to incorpo-

rate the PTBpH sensor into a girdle, which gives the necessary mechanical support

being comfortable and wearable. Figure 11 shows a prototype, which includes the260

PTBpH sensor, the reference electrode and the girdle. The Multimeter is only used

for evaluation purpose, but the final design would include a small measurement

interface and a wireless communication module, which is simple to implement.

Figure 11: embodiment of the PTBpH electrode into a garment where A (left) shows the possible
integration of the sensor into a garment: 1) PTBpH sensor, 2) commercial Ag/AgCl 3M electrode,
and 3) girdle. B) Arrangement of the measurement set over the human skin, where 1) is the com-
mercial Ag/AgCl 3M electrode and 2) is the PTBpH sensor.

17
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It is noteworthy that, besides the sensor designed by Caldara et al. [14] [15],

there has not been reported in the bibliography another textile-based pH sensor.265

An advantage of the PTBpH sensors here presented is that they are based on open

circuit voltage measurements, which could give a direct pH measurement, dif-

ferent from the colorimetric method needed by the Caldara sensor. Besides, us-

ing these sensors, the problem of sweat harvesting is solved without the need of

pumps or sophisticated system designs, since they work in direct contact with the270

skin.

4. Conclusion

A pH sweat sensor was presented, which showed a good sensitivity and cor-

relation in pH measurements. Between the three IrO2 modified fabrics, the SSM

presents the best response. This fabric was used in two different configurations,275

SSMWOS and SSMFE, showing differences in sensitivity and temperature depen-

dence for pH response. The best result was obtained with the configuration that

maximizes the contact surface between the stainless steel fibers (SSMFE), which

can measure sweat phantoms of different pH with an error of 0.15%. This config-

uration was also less affected by temperature. Measurements of the pH of sweat in280

real skin exhibited good response, with an error of 4% compared with a reference

measurement made with a commercial pH test strip.

As was mentioned in the introduction of the manuscript, several approaches

for wearable pH sensors have been proposed. Nevertheless, the state of the art

of textile-based ones is still poor, moreover, if low cost, simple hardware require-285

ments and reusability are desired features for them. The PTBpH sensor proposed

here presents some advantages over the sensors of the previous mentioned lit-

erature. The major ones are its low cost, simple hardware requirements and the

18
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possibility to find a great number of SSM fabrics with different threads size in the

market. In addition, the biocompatibility characteristics of IrO2 coatings allow290

the PTBpH sensor to be used without major risks. Another great advantage when

compared against the other available wearable pH sensor is washability. Since

IrO2 coating is firmly attached to the SSM fabric, it can be easily washed with DI

water.

Because of these features, the PTBpH is highly reusable and wearable, as was295

previously showed with the sensor integrated in a sport belt. Finally, another

important fact to remark is the absence of potentiometric textile based sensors in

the bibliography, which increases the novelty and originality of this work.
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