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Abstract

The aim of this work is to generalize the notions of Schur complements and shorted operators to
Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property)
acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[S] of A
to S is defined. The basic properties of A/[S] are developed and different characterizations are given,
most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space.

1 Introduction

Let H be a Hilbert space, L(H) be the algebra of bounded linear operators on H and L(H)+ be the cone
of positive operators in L(H). Given A ∈ L(H)+ and a closed subspace S of H, the Schur complement
(or shorted operator) A/S was defined by M. G. Krein [16] and W. N. Anderson and G. E. Trapp [2] as

A/S = max
≤
{X ∈ L(H)+ : X ≤ A, R(X) ⊆ S⊥},

where the natural order ≤ in L(H)+ is considered.
The notion of Schur complement was generalized to selfadjoint operators in Hilbert spaces, see [4],

[9] ,[10], [17]. More generally, given Hilbert spaces H and K, J. Antezana et. al. [6] defined the shorted
operator for an arbitrary A ∈ L(H,K) with respect to a pair of suitable closed subspaces S and T of H
ad K, respectively.

If A is a positive operator, E. Pekarev [18] proved that

A/S = A1/2PM⊥A
1/2, (1.1)

whereM = A1/2(S) and PM⊥ is the orthogonal projection ontoM⊥. This paper is devoted to study the
Schur complement of J-selfadjoint operators in Krein spaces, whose definition is inspired by Eq. (1.1).

Let H be a Krein space with fundamental symmetry J . Bognár-Kramli’s theorem [8] states that, if
A ∈ L(H) is J-selfadjoint then there exist a Krein space K and a bounded injective operator D ∈ L(K,H)
such that

A = DD#,

where D# ∈ L(K,H) denotes the J-adjoint operator of D. However, this decomposition may not be
unique (see [19]). A J-selfadjoint operator A ∈ L(H) has the unique factorization property if, for any
pair of decompositions A = DiD

#
i , Di ∈ L(Ki,H), N(Di) = {0} (i = 1, 2), there exists an isomorphism

U ∈ L(K1,K2) such that D1 = D2U .
Consider a J-selfadjoint operator A ∈ L(H) with the unique factorization property and suppose that

M = D#(S) is a Krein subspace of K, then the Schur complement of A to S is defined as

A/[S] = DPM[⊥]//MD
#, (1.2)

where M[⊥] is the J-orthogonal subspace to M in the Krein space K and PM[⊥]//M ∈ L(K) is the
J-selfadjoint projection onto M[⊥].
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The main properties of shorted operators in Hilbert spaces, which where proved by M. G. Krein
[16], W. N. Anderson and G. E. Trapp [2] and E. Pekarev [18], have a natural counterpart for Schur
complements in Krein spaces.

The contents of the paper are the following: Section 2 introduces the basic notation and some known
results in Krein spaces including topics such as Bognár-Kramli’s theorem, the unique factorization prop-
erty, and J-contractive projections. It also contains the definition and a summary of the properties of
the shorting operation in Hilbert spaces.

In Section 3, the Schur complement of A to S, A/[S], and the S-compression of A, A[S], are defined
for a given J-selfadjoint operator A ∈ L(H) with the unique factorization property; also, the range and
the nullspace of A/[S] and A[S] are characterized.

Section 4 is devoted to study the Schur complement for definite subspaces. In particular, it is proved
that, if M = D#(S) is a J-nonnegative subspace of H, then

A/[S] = max
≤J

{X ∈ I(A) : X ≤J A, R(X) ⊆ S [⊥] },

where I(A) = {X = EE# : E ∈ L(K,H), R(E) ⊆ R(D)}. Also, it is shown that

A/[S] = inf
≤J

{Q#AQ : Q ∈ Q(H), N(Q) = S}.

Finally, in Section 5 the Schur complement for J-positive operators is described in detail. In this
case A/[S] is defined for every closed subspace S of H and it always has both extremal characterizations.
Furthermore, the shorting operation of a J-positive operator A in a Krein space H is intimately related
to the shorted of JA in the Hilbert space |H|. This relationship allows to translate the classical results
into the Krein space’s context.

2 Preliminaries

Along this work H denotes either a (complex, separable) Hilbert space with inner product 〈 , 〉 or a
(complex) Krein space with indefinite metric [ , ], depending on the context. If S is a subspace of a
Hilbert space H, S⊥ is the orthogonal complement of S. Analogously, if S is a subspace of a Krein space
H, the J-orthogonal subspace to S is the closed subspace of H defined by S [⊥] = {x ∈ H : [x, y ] =
0 for every y ∈ S}. Sometimes we use the notation S [⊥]H instead of S [⊥] to emphasize the Krein space
considered.

Given two Hilbert spaces H and K, L(H,K) is the algebra of bounded linear operators from H into
K and L(H) = L(H,H). If T ∈ L(H) then T ∗ denotes the adjoint operator of T , R(T ) stands for the
range of T and N(T ) for its nullspace.

Given a Hilbert space H, let L(H)+ be the cone of (semidefinite) positive operators in L(H) and
denote by Q(H) the set of projections in L(H), i.e., Q(H) = {Q ∈ L(H) : Q2 = Q}. If S and T
are two (closed) subspaces of H, denote by S u T the direct sum of S and T . If H = S u T , the
oblique projection onto S along T , PS//T , is the projection with R(PS//T ) = S and N(PS//T ) = T . In
particular, PS = PS//S⊥ is the orthogonal projection onto S.

Krein spaces

In what follows we give some basic results on Krein spaces. For a complete exposition of the subject and
the proofs of the results below see the books by J. Bognár [7] and T. Ya. Azizov and I. S. Iokhvidov [15],
the monographs by T. Ando [3] and by M. Dritschel and J. Rovnyak [12] and the paper by J. Rovnyak
[19].

Given a Krein space H and a fundamental decomposition H = H+ ⊕ H−, the direct sum of the
Hilbert spaces (H+, [ , ]) and (H−,−[ , ]) is denoted by |H|. If H and K are Krein spaces then L(H,K)
(respectively L(H)) stands for L(|H|, |K|) (respectively L(|H|)). Given T ∈ L(H,K), the J-adjoint
operator of T is denoted by T#. An operator T ∈ L(H) is J-selfadjoint if T = T#.

The following theorem is due to J. Bognár and A. Krámli [8]. See also Theorem 1.1 in [12].
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Theorem 2.1 (Bognár-Krámli). Let H be a Krein space with fundamental symmetry J . Any J-selfadjoint
operator T ∈ L(H) can be written in the form

T = WW#,

where W ∈ L(K,H) for some Krein space K and N(W ) = {0}.

While factorizations as in Theorem 2.1 always exist, they are not in general unique.

Definition. Let H be a Krein space with fundamental symmetry J . A J-selfadjoint operator T ∈ L(H)
has the unique factorization property (UFP) if for any two factorizations

T = WiW
#
i , Wi ∈ L(Ki,H), N(Wi) = {0}, i = 1, 2,

there is an isomorphism U ∈ L(K1,K2) such that W1 = W2U .

Remark 2.2. Let T ∈ L(H) be a J-selfadjoint operator satisfying the UFP and suppose that T = WW#

where W ∈ L(K,H), N(W ) = {0} and K is a Krein space. Then,

1. if T = DD# is another factorization of T as in Theorem 2.1 then R(D) = R(W );

2. if R(T ) is closed then R(D#) = K.

An operator T ∈ L(H) is J-positive if [Tx, x ] ≥ 0 for every x ∈ H. We denote it by T ≥J 0. If T1

and T2 are J-selfadjoint operators, we say that T1 ≥J T2 if T1 − T2 ≥J 0. It is easy to show that ≥J is a
partial order in the real vector space of J-selfadjoint operators.

The following theorem provides some examples of classes of operators with the UFP.

Theorem 2.3. Let H be a Krein space with fundamental symmetry J , and let T ∈ L(H) be a J-selfadjoint
operator. Each of the following conditions is sufficient for T to have the unique factorization property:

1. T ≥J 0;

2. T 2 ≤J T .

Given a Krein space H, an operator T ∈ L(H) is J-contractive if [Tx, Tx ] ≤ [x, x ] for every x ∈ H.
Therefore, T is J-contractive if and only if T#T ≤J I. Analogously, an operator T ∈ L(H) is J-expansive
if [Tx, Tx ] ≥ [x, x ] for every x ∈ H (i.e. T#T ≥J I).

We say that S is a Krein subspace of H if it is a Krein space with the indefinite metric of H. It is well
known that S is a Krein subspace of H if and only if S = R(Q) for some J-selfadjoint Q ∈ Q(H). Also, a
subspace S of H is J-nonnegative (respectively J-nonpositive) if [x, x ] ≥ 0 (respectively [x, x ] ≤ 0) for
every x ∈ S.

S. Hassi and K. Nordström proved the following result, which characterizes those projections which
are J-contractive (see [14, §3, Proposition 5]). A similar result holds for J-expansive projections.

Proposition 2.4. If Q ∈ Q(H) then the following conditions are equivalent:

1. Q is J-contractive;

2. Q is J-selfadjoint and N(Q) is J-nonnegative;

3. I −Q is J-positive.

Hassi and Nordström [14, §4, Theorem 2] also proved that every J-selfadjoint projection Q can be
factored as follows.

Theorem 2.5. Let Q be a J-selfadjoint projection in a Krein space H. Then, Q can be represented as
Q = Q+Q− where Q+ and Q− are two commuting projections such that Q+ is J-contractive and Q− is
J-expansive.
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Shorted operators in Hilbert spaces

Definition (Krein [16], Anderson-Trapp [1] [2]). Let H be a Hilbert space. Given A ∈ L(H)+ and a
closed subspace S of H, the shorted operator of A to S is defined by

A/S = max
≤
{X ∈ L(H)+ : X ≤ A, R(X) ⊆ S⊥},

where ≤ is the natural order given by the cone L(H)+.

The following theorem collects many well known results about shorted operators. See [2], [18], [9],
[10] for the proof of these facts.

Theorem 2.6. Let S be a closed subspace of a Hilbert space H and let A ∈ L(H)+. Then:

1. If M = A1/2(S) then A/S = A1/2PM⊥A
1/2.

2. R(A) ∩ S⊥ ⊆ R(A/S) ⊆ R(A1/2) ∩ S⊥ and N(A/S) = A−1/2(M).

3. R((A/S)1/2) = R(A1/2) ∩ S⊥.

4. A/S = inf{Q∗AQ : Q ∈ Q(H), N(Q) = S}.

5. If T is a closed subspace of H such that S + T is closed then A/S+T = (A/S)/T = (A/T )/S .

If H is a Hilbert space and (An)n∈N is a sequence in L(H) we say that (An)n∈N converges in the SOT
topology to A ∈ L(H) (and denote it by An

SOT−−−−→
n→∞

A) if ‖Anx−Ax‖ −−−−→
n→∞

0 for every x ∈ H. Moreover,

if (An)n∈N and A are selfadjoint operators, we say that An

SOT

↘ A if An
SOT−−−−→

n→∞
A and An ≥ An+1 (≥ A)

for every n ∈ N.
The following are some results about the continuity of the shorting operation, see [2], [5].

Proposition 2.7. Let An (n ∈ N) and A be operators in L(H)+ such that An

SOT

↘ A as n → ∞. Then,

(An)/S
SOT

↘ A/S as n→∞, for every closed subspace S of H.

Proposition 2.8. Let Sn (n ∈ N) and S be closed subspaces such that PSn

SOT

↗ PS as n → ∞. Then,

A/Sn

SOT

↘ A/S as n→∞, for every A ∈ L(H)+.

The following example shows that PSn

SOT

↘ PS is not a sufficient condition to imply the convergence of
the sequence (A/Sn

)n∈N to A/S .

Example 2.9. Let A ∈ L(H)+ such that N(A) = {0} and R(A) is not closed. Consider a dense subspace
T of H such that T ∩R(A1/2) = {0} and let {en}n∈N be an orthonormal basis of H contained in T .

Let Sn = span{ek : k ≥ n} for n ≥ 1. Then, PSn

SOT

↘ 0. Furthermore, A/Sn
= 0 because

R((A/Sn
)1/2) = R(A1/2) ∩ S⊥n = R(A1/2) ∩ span{e1, . . . , en} = {0}.

But A/{0} = A 6= 0.

3 Schur complements in Krein spaces

LetH be a Krein space with fundamental symmetry J and A ∈ L(H) be a J-selfadjoint operator satisfying
the UFP. Suppose that A = DD#, where K is a Krein space and D ∈ L(K,H) with N(D) = {0}. Given
a closed subspace S of H, consider M = D#(S) and suppose that M is a Krein subspace of K.
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Definition. Under the above hypothesis, the Schur complement of A to S is defined by

A/[S] = DPM[⊥]//MD
#,

and the S-compression of A is A[S] = DPM//M[⊥]D#.

The operators A[S] and A/[S] are well defined: by the UFP of A, if A = DiD
#
i where Di ∈ L(Ki,H)

and N(Di) = {0} for i = 1, 2, there exists an isomorphism U ∈ L(K1,K2) such that D1 = D2U . Given
the subspaces Mi = D#

i (S), for i = 1, 2, observe that M1 is a Krein subspace of K1 if and only if
M2 = U(M1) is a Krein subspace of K2, and in this case UPM1//M[⊥]

1
U# = PM2//M[⊥]

2
. Then,

D1PM1//M[⊥]
1
D#

1 = D2(UPM1//M[⊥]
1
U#)D#

2 = D2PM2//M[⊥]
2
D#

2 .

Also, the following properties hold for the Schur complement and the S-compression:

i. A[S], A/[S] ∈ L(H),

ii. A[S], A/[S] are JH-selfadjoint operators (because PM//M[⊥] and PM[⊥]//M are JK-selfadjoint),

iii. A[S] +A/[S] = A.

Let us characterize the range and the nullspace of A[S] and A/[S]. The lemma below is well known and
its proof is straightforward.

Lemma 3.1. Let H and K be Krein spaces. If T ∈ L(H,K) then,

1. N(T#) = R(T )[⊥]K .

2. T#(S) [⊥]H = T−1(S [⊥]K) for every subspace S of K.

Proposition 3.2. Let A = DD# ∈ L(H) be a J-selfadjoint operator satisfying the UFP and S a closed
subspace of H such that M = D#(S) is a Krein subspace of K. Then,

1. A(S) ⊆ R(A[S]) ⊆ A(S);

2. N(A[S]) = A(S)[⊥];

3. R(A) ∩ S [⊥] ⊆ R(A/[S]) ⊆ R(D) ∩ S [⊥];

4. N(A/[S]) = (D#)−1(M).

Proof. 1. It is easy to see that

A(S) = D(D#(S)) = A[S](S) ⊆ R(A[S]) ⊆ D(M) = D(D#(S)) ⊆ DD#(S) = A(S).

2. Since N(D) = {0}, it follows that

N(A[S]) = N(PM//M[⊥]D#) = (D#)−1(M[⊥]) = A−1(S [⊥]) = A(S)[⊥].

3. First of all observe that, by Remark 2.2, R(D) does not depend on the factorization. If y ∈
R(A) ∩ S [⊥] then there exists x ∈ H such that y = Ax ∈ S [⊥]. Note that D#x ∈ M[⊥] and A/[S]x =
DPM[⊥]//M(D#x) = DD#x = y. Thus, R(A) ∩ S [⊥] ⊆ R(A/[S]). On the other hand, R(A/[S]) ⊆
D(M[⊥]) = D(D−1(S [⊥])) = S [⊥] ∩R(D).

4. As in item 2., notice that N(A/[S]) = N(PM[⊥]//MD
#) = (D#)−1(M).

In general, the inclusions in items 1. and 3. of the above proposition are strict. See the examples in [2]
and [10].

Proposition 3.3. Let A ∈ L(H) be a J-selfadjoint operator satisfying the UFP, A = DD#, D ∈ L(K,H)
with N(D) = {0}, and S a closed subspace of H such that M = D#(S) is a Krein subspace of K. If T
is a closed subspace of H such that S ⊆ T ⊆ (D#)−1(M) then D#(T ) =M and

A/[T ] = A/[S].

Proof. Let T be a closed subspace of H such that S ⊆ T ⊆ (D#)−1(M), then applying D# it follows
that D#(S) ⊆ D#(T ) ⊆ D#((D#)−1(M)) ⊆M. Therefore, D#(T ) =M and A/[T ] = A/[S].

5



4 Extremal properties for definite subspaces

The main results in this section are stated for both J-nonnegative and J-nonpositive subspaces, but we
only give the proofs for J-nonnegative ones. The proofs in the nonpositive case are similar.

Let A ∈ L(H) be a J-selfadjoint operator satisfying the UFP. If A = DD# where K is a Krein space
and D ∈ L(K,H) with N(D) = {0}, consider the set

I(A) = {X = EE# : E ∈ L(K,H), R(E) ⊆ R(D)}.

By Remark 2.2, the subspace R(D) only depends on A, so that, the same is true for the set I(A).
If S is a closed subspace of H, consider the subsets

M−(A,S [⊥]) = {X ∈ I(A) : X ≤J A, R(X) ⊆ S [⊥] },
M+(A,S [⊥]) = {X ∈ I(A) : A ≤J X, R(X) ⊆ S [⊥] }.

Observe that these sets can be empty.

First of all, consider the particular case A = I. Observe that I ∈ L(H) has the UFP because it satisfies
a sufficient condition: I2 = I ≤J I (see Theorem 2.3). Furthermore, the unique factorization (up to
isomorphism) is I = DD#, where D = I ∈ L(H) and therefore M−(I,S [⊥]) = {X ∈ L(H) : X ≤J

I, R(X) ⊆ S [⊥] } and M+(I,S [⊥]) = {X ∈ L(H) : I ≤J X, R(X) ⊆ S [⊥] }.

Lemma 4.1. Let S be a Krein subspace of H and Q = PS[⊥]//S . Then,

1. Q = max
≤J

M−(I,S [⊥]) if S is J-nonnegative.

2. Q = min
≤J

M+(I,S [⊥]) if S is J-nonpositive.

Proof. Suppose that S is a J-nonnegative Krein subspace of H. Then, Q is J-contractive (see Proposition
2.4) and R(Q) = S [⊥]. Therefore, Q ∈M−(I,S [⊥]).

Moreover, if X ∈ M−(I,S [⊥]) then X ≤J Q: R(X) ⊆ S [⊥] implies that QX = X, and QXQ =
(QX)Q = XQ = QX = X because X and Q are J-selfadjoint. Then, if x ∈ H,

[ (Q−X)x, x ] = [Q(I −X)Qx, x ] = [ (I −X)Qx,Qx ] ≥ 0,

i.e. X ≤J Q. Therefore, Q = max≤J
M−(I,S [⊥]).

Corollary 4.2. Let S be a Krein subspace of H. If Q = PS[⊥]//S then there exist two Krein subspaces
S+ and S− of H such that S = S+ u S− and

Q = max
≤J

M−(I,S [⊥]
+ ) min

≤J

M+(I,S [⊥]
− ).

Proof. If S is a Krein subspace ofH then, by Theorem 2.5, Q = Q+Q−, where Q+ and Q− are commuting
projections such that Q+ is J-contractive and Q− is J-expansive. Also (I − Q+)(I − Q−) = 0 (see the
proof in [14]) so that I −Q = (I −Q+) + (I −Q−) and S = N(Q) = N(Q+) uN(Q−).

By Lemma 4.1, Q+ = max≤J
M−(I,R(Q+)) and Q− = min≤J

M+(I,R(Q−)). Therefore, taking
S± = N(Q±), the proof is complete.

The following theorem is an extremal characterization of the Schur complement similar to the one given
by Anderson-Trapp [2, Theorem 1].

Theorem 4.3. Let M = D#(S) be a Krein subspace of K. Then:

1. A/[S] = max
≤J

M−(A,S [⊥]) if M is J-nonnegative.

2. A/[S] = min
≤J

M+(A,S [⊥]) if M is J-nonpositive.
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Proof. Let Q = PM[⊥]//M and suppose that M is J-nonnegative (i.e. Q is J-contractive). Notice
that A/[S] = (DQ)(DQ)# and R(DQ) ⊆ R(D), then A/[S] ∈ I(A). Since Q ≤J I we have that
A/[S] = DQD# ≤J DD

# = A and, by Proposition 3.2, R(A/[S]) ⊆ S [⊥]. Therefore, A/[S] ∈M−(A,S [⊥]).
Moreover, A/[S] = max

≤J

M−(A,S [⊥]). Indeed, if X = EE# ∈ M−(A,S [⊥]) then R(E) ⊆ R(D) and,

by Douglas’ theorem [11, Theorem 1], the equation DY = E admits a bounded solution in L(K). If
Z ∈ L(K) is a solution of the above equation, then X = DZZ#D#. Since X ≤J A, given x ∈ H,

[ (IK − ZZ#)D#x,D#x ]K = [D(I − ZZ#)D#x, x ]H = [ (A−X)x, x ]H ≥ 0,

so [ (IK−ZZ#)y, y ]K ≥ 0 for every y ∈ R(D#) = N(D)[⊥]K = K. Hence, ZZ# ≤J IK. Since R(X) ⊆ S [⊥]

we have that R(ZZ#D#) ⊆ D−1(S [⊥]) =M[⊥]. Moreover, R(ZZ#) = ZZ#(R(D#)) ⊆ R(ZZ#D#) ⊆
M[⊥]. Therefore, ZZ# ∈ M−(I,M[⊥]) and, by Lemma 4.1, ZZ# ≤J Q (notice that the Krein space
considered here is K). Then,

X = DZZ#D# ≤J DQD
# = A/[S],

i.e. A/[S] = max
≤J

M−(A,S [⊥]).

Corollary 4.4. Let H be a Krein space and A ∈ L(H) a J-selfadjoint operator with the UFP. Consider
a factorization A = DD# where K is a Krein space and D ∈ L(K,H) with N(D) = {0}. If A has closed
range and S is a closed subspace of H such that M = D#(S) is a Krein subspace of K, then there exist
two closed subspaces S+ and S− of H such that S+ u S− = (D#)−1(M) and

A/[S] = max
≤J

M−(A,S [⊥]
+ ) + min

≤J

M+(A,S [⊥]
− )−A.

Proof. Suppose that M is a Krein subspace of K and let Q = PM[⊥]//M. By Theorem 2.5, there exist
commuting projections Q+ and Q− such that Q = Q+Q−, where Q+ is J-contractive, Q− is J-expansive
and N(Q) = N(Q+) uN(Q−) (see the proof in [14]).

Let S± = (D#)−1(N(Q±)) and defineM± = D#(S±). Since R(D#) = K (see Remark 2.2), it follows
that M± = D#(S±) = N(Q±) ∩R(D#) = N(Q±). Therefore, A/[S±] = DQ±D

# and

A[S] = D(I −Q)D# = D((I −Q+) + (I −Q−))D# = A[S+] +A[S−].

As a consequence of Proposition 2.4, the subspaces M+ and M− are J-nonnegative and J-nonpositive,
respectively. Then, by Theorem 4.3,

A/[S] = A−A[S] = A− (A[S+] +A[S−]) = A/[S+] +A/[S−] −A =

= max
≤J

M−(A,S [⊥]
+ ) + min

≤J

M+(A,S [⊥]
− )−A.

Theorem 4.5. Let S be a closed subspace of H. Suppose that A ∈ L(H) is J-selfadjoint and satisfies
the UFP. If A = DD# with D ∈ L(K,H), N(D) = {0}, suppose that M = D#(S) is a Krein subspace
of K. Then:

1. A/[S] = inf
≤J

{Q#AQ : Q ∈ Q(H), N(Q) = S} if M is J-nonnegative.

2. A/[S] = sup
≤J

{Q#AQ : Q ∈ Q(H), N(Q) = S} if M is J-nonpositive.

Proof. Suppose that M is J-nonnegative and consider P = PM[⊥]//M. Then, for every x ∈ K,

[Px, Px ]K = min
m∈M

[x−m,x−m ]K.

Indeed, given x ∈ K and m ∈M,

[x−m,x−m ] = [Px+(I−P )x−m,Px+(I−P )x−m ] = [Px, Px ]+[ (I−P )x−m, (I−P )x−m ] ≥ [Px, Px ].
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Furthermore, observe that R(D#) is dense in K because N(D) = {0}. Then, if y ∈ H,

[A/[S]y, y ]H = [PD#y, PD#y ]K = min
m∈M

[D#y −m,D#y −m ]K = inf
s∈S

[D#(y − s), D#(y − s) ]K =

= inf
s∈S

[A(y − s), y − s ]H.

If Q ∈ Q(H) with N(Q) = S, given x ∈ H,

[Q#AQx, x ]H = [AQx,Qx ]H = [A(x− (I −Q)x), x− (I −Q)x ]H ≥ [A/[S]x, x ]H

because (I −Q)x ∈ S. Then, A/[S] ≤J Q
#AQ for every Q ∈ Q(H) with N(Q) = S i.e. A/[S] is a lower

bound of the set {Q#AQ : Q ∈ Q(H), N(Q) = S}.
Let C be any lower bound of the set {Q#AQ : Q ∈ Q(H), N(Q) = S}, we are going to show that

C ≤J A/[S]. Fixed x ∈ H, if x 6∈ S, observe that for every s ∈ S there exists Q ∈ Q(H) with N(Q) = S
such that (I −Q)x = s. Therefore,

[A(x− s), x− s ]H = [AQx,Qx ]H ≥ [Cx, x ]H

for every s ∈ S. Then, [A/[S]x, x ]H ≥ [Cx, x ]H. On the other hand, if x ∈ S then Q#AQx = 0 for every
Q ∈ Q(H) with N(Q) = S. Therefore,

[Cx, x ]H ≤ [Q#AQx, x ]H = 0.

But A/[S]x = DPM[⊥]//MD
#x = 0 because D#x ∈ M. Thus, [A/[S]x, x ]H = 0 ≥ [Cx, x ]H. Since

x ∈ H was arbitrary, A/[S] ≥J C. So,

A/[S] = inf
≤J

{Q#AQ : Q ∈ Q(H), N(Q) = S}.

5 Schur complements of J-positive operators in Krein spaces

By Theorem 2.3, J-positive operators have the unique factorization property. Furthermore, it is easy to
see that, given a factorization as in Theorem 2.1, the vector space K acting as the domain of the factor
can be chosen to be a Hilbert space (see Theorem 1.1 in [12]).

Let H be a Krein space and A ∈ L(H) be J-positive. Along this section, we are going to use the
following factorization of A: if |A| = JA ∈ L(|H|)+, consider the Hilbert space K = J(N(A)⊥) and
D = J |A|1/2J |K ∈ L(K,H). Then, N(D) = {0}, D# = J |A|1/2 ∈ L(H,K) and DD# = A.

Observe that, if K is a Hilbert space and S is any closed subspace ofH, then the subspaceM = D#(S)
is a closed subspace of K and therefore a “Krein subspace” of K. Thus, the Schur complement A/[S] is
well defined for every closed subspace S of H and

A/[S] = DPM⊥D
# = (J |A|1/2J)PM⊥(J |A|1/2) = J |A|1/2(JPM⊥J)|A|1/2 =

= J |A|1/2PJ(M⊥)|A|1/2, (5.1)

where PJ(M⊥) ∈ L(K) is the orthogonal projection onto J(M⊥). Therefore, A/[S] is J-positive. Further-
more, notice that the operator E ∈ L(M⊥,H) defined by Ex = Dx = J |A|1/2Jx, x ∈M⊥ satisfies

A/[S] = EE#, and N(E) = {0}.

Therefore, it is the unique factorization (up to isomorphism) of A/[S].

Remark 5.1. Observe that J(M⊥) = JD#(S)
⊥

= (|A|1/2(S))⊥. Thus, from Eq. (5.1) and item 1. of
Theorem 2.6 follows that, if A ∈ L(H) is J-positive then

A/[S] = J (|A|/S), (5.2)

where |A|/S is the shorted operator (in the Hilbert space sense) of |A| to S.
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Therefore, the shorting operation of a J-positive operator A in a Krein space H is intimately related to
the shorted of the positive operator JA in the Hilbert space |H|. The following propositions translate the
classical results of Schur complements into Krein space’s context. First of all, we state Douglas’ theorem
for J-positive operators in Krein spaces.

Theorem 5.2. Let H be a Krein space and consider J-positive operators A,B ∈ L(H). If A = DD#,
D ∈ L(K1,H), N(D) = {0} is any factorization of A as in Theorem 2.1 (resp. B = EE#, E ∈ L(K2,H),
N(E) = {0}) then the following conditions are equivalent:

1. equation DX = E has a solution in L(K2,K1);

2. R(E) ⊆ R(D);

3. there exists λ > 0 such that B ≤J λA.

In this case, there exists a unique X ∈ L(K2,K1) such that DX = E. Moreover, N(X) = N(E) and
‖X‖ = inf{λ > 0 : B ≤J λA}.

Proof. Observe that if A (resp. B) is J-positive then K1 (resp. K2) is a Hilbert space. Therefore,
D# = D∗J and E# = E∗J . So, equation A ≤J λB is equivalent to DD∗ ≤ λEE∗ and the results follows
by Douglas’ theorem [11].

Proposition 5.3. If S and T are closed subspaces of H and A,B ∈ L(H) are J-positive, then

1. A/[S] = max
≤J

M−(A,S [⊥]) = max
≤J

{X ∈ L(H) : 0 ≤J X ≤J A, R(X) ⊆ S [⊥]};

2. A/[S] = inf
≤J

{Q#AQ : Q ∈ Q(H), N(Q) = S};

3. if A ≤J B then A/[S] ≤J B/[S];

4. if T ⊆ S then A/[S] ≤J A/[T ].

Proof. 1. Given A ∈ L(H) J-positive and S a closed subspace of H, A/[S] = max≤J
M−(A,S [⊥]) by

Theorem 4.3 (recall that K is a Hilbert space). Furthermore,

M−(A,S [⊥]) = {X ∈ L(H) : 0 ≤J X ≤J A, R(X) ⊆ S [⊥]}.

Let A = {X ∈ L(H) : 0 ≤J X ≤J A, R(X) ⊆ S [⊥]}. If X ∈ A then X ≥J 0 and it admits a
factorization X = EE#, where E ∈ L(K1,H), N(E) = {0} and K1 is a Hilbert space, but we can
substitute K1 be the Hilbert space K appearing in the decomposition of A. Since X ≤J A it follows that
R(E) ⊆ R(D) by Theorem 5.2. Thus X ∈ I(A), and the conditions X ≤J A and R(X) ⊆ S [⊥] implies
that X ∈M−(A,S [⊥]).

On the other hand, if X ∈M−(A,S [⊥]) then there exists E ∈ L(K,H) such that X = EE# = EE∗J
because K is a Hilbert space. Then, X ≥J 0 and, by the remaining conditions on X, X ∈ A. Therefore,
M−(A,S [⊥]) ⊆ A.

3. If A ≤J B then |A| = JA ≤ JB = |B|. By Theorem 2.6, |A|/S ≤ |B|/S and therefore A/[S] =
J(|A|/S) ≤J J(|B|/S) = B/[S] (see Eq. (5.2)).

Items 2. and 4. follows analogously.

The following proposition generalizes item 3. of Theorem 2.6:

Proposition 5.4. Let S be a subspace of H and A ∈ L(H) a J-positive operator. If A = DD# (with
K a Hilbert space, D ∈ L(K,H), N(D) = {0}) and A/[S] = EE# (with E a Hilbert space, E ∈ L(E ,H),
N(E) = {0}) then

R(E) = R(D) ∩ S [⊥].
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Proof. If A = DD# with D ∈ L(K,H), N(D) = {0} then A/[S] = FF# where F ∈ L(M⊥,H) is defined
by Fx = Dx for x ∈M⊥. Thus,

R(F ) = R(DPM⊥) = D(M⊥) = D(D−1(S [⊥])) = R(D) ∩ S [⊥],

and, by Remark 2.2, R(E) = R(F ) = R(D) ∩ S [⊥].

Proposition 5.5. Let H be a Krein space and A ∈ L(H) a J-positive operator. If S1 and S2 are closed
subspaces of H such that S1 + S2 is closed then

A/[S1+S2] = (A/[S1])/[S2] = (A/[S2])/[S1].

Proof. Suppose that S1 and S2 are closed subspaces of H such that S1 + S2 is closed. Consider |A| =
JA ∈ L(|H|)+. Then, by item 4. of Theorem 2.6, |A|/S1+S2 = (|A|/S1)/S2 = (|A|/S2)/S1 . Therefore, by
Eq. (5.2),

A/[S1+S2] = J(|A|/S1+S2) = J [(|A|/S1)/S2 ] = (J(|A|/S1))/[S2] = (A/[S1])/[S2].

Analogously, A/[S1+S2] = (A/[S2])/[S1].

In what follows, given a sequence (Tn)n∈N of J-positive operators, the notation Tn

J-SOT

↘ T stands for
Tn

SOT−−−−→
n→∞

T and Tn ≥J Tn+1(≥J T ) for every n ∈ N.

Observe that, Tn

J-SOT

↘ T if and only if JTn

SOT

↘ JT : Indeed, if Tn

J-SOT

↘ T then Tn
SOT−−−−→

n→∞
T and

Tn ≥J Tn+1 (≥J T ). Equivalently, JTn
SOT−−−−→

n→∞
JT (because J is invertible) and JTn ≥ JTn+1 (≥ JT ), i.

e. JTn

SOT

↘ JT .
The next proposition follows easily using the remark above and Propositions 2.7 and 2.8.

Proposition 5.6. Let H be a Krein space.

1. If (An)n∈N is a sequence of J-positive operators in L(H) such that An

J-SOT

↘ A, then

An /[S]

J-SOT

↘ A/[S].

2. If (Sn)n∈N and S are closed subspaces of H such that Sn ⊆ Sn+1 for every n ∈ N and S =
⋃

n∈N Sn,

then A/[Sn]

J-SOT

↘ A/[S] for every J-positive operator A ∈ L(H).

Remark 5.7. Example 2.9 can be modified to prove that item 2 of Proposition 5.6 is not true if Sn ⊇ Sn+1

for every n ∈ N and S =
⋂

n∈N Sn.
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